utaustin_mutex

  • विवरण :

विविध घरेलू हेरफेर कार्य

विभाजित करना उदाहरण
'train' 1,500
  • फ़ीचर संरचना :
FeaturesDict({
    'episode_metadata': FeaturesDict({
        'file_path': Text(shape=(), dtype=string),
    }),
    'steps': Dataset({
        'action': Tensor(shape=(7,), dtype=float32, description=Robot action, consists of [6x end effector delta pose, 1x gripper position]),
        'discount': Scalar(shape=(), dtype=float32, description=Discount if provided, default to 1.),
        'is_first': bool,
        'is_last': bool,
        'is_terminal': bool,
        'language_embedding': Tensor(shape=(512,), dtype=float32, description=Kona language embedding. See https://tfhub.dev/google/universal-sentence-encoder-large/5),
        'language_instruction': Text(shape=(), dtype=string),
        'observation': FeaturesDict({
            'image': Image(shape=(128, 128, 3), dtype=uint8, description=Main camera RGB observation.),
            'state': Tensor(shape=(24,), dtype=float32, description=Robot state, consists of [7x robot joint angles, 1x gripper position, 16x robot end-effector homogeneous matrix].),
            'wrist_image': Image(shape=(128, 128, 3), dtype=uint8, description=Wrist camera RGB observation.),
        }),
        'reward': Scalar(shape=(), dtype=float32, description=Reward if provided, 1 on final step for demos.),
    }),
})
  • फ़ीचर दस्तावेज़ीकरण :
विशेषता कक्षा आकार डीप्रकार विवरण
फीचर्सडिक्ट
एपिसोड_मेटाडेटा फीचर्सडिक्ट
एपिसोड_मेटाडेटा/फ़ाइल_पथ मूलपाठ डोरी मूल डेटा फ़ाइल का पथ.
कदम डेटासेट
कदम/कार्रवाई टेन्सर (7,) फ्लोट32 रोबोट एक्शन में [6x एंड इफ़ेक्टर डेल्टा पोज़, 1x ग्रिपर पोज़िशन] शामिल है
कदम/छूट अदिश फ्लोट32 यदि छूट प्रदान की गई है, तो डिफ़ॉल्ट 1 है।
चरण/पहला है टेन्सर बूल
चरण/अंतिम है टेन्सर बूल
चरण/is_terminal टेन्सर बूल
चरण/भाषा_एम्बेडिंग टेन्सर (512,) फ्लोट32 कोना भाषा एम्बेडिंग. https://tfhub.dev/google/universal-sentence-encoder-large/5 देखें
चरण/भाषा_निर्देश मूलपाठ डोरी प्रत्येक कार्य के लिए विस्तृत भाषा निर्देश।
कदम/अवलोकन फीचर्सडिक्ट
चरण/अवलोकन/छवि छवि (128, 128, 3) uint8 मुख्य कैमरा आरजीबी अवलोकन।
चरण/अवलोकन/स्थिति टेन्सर (24,) फ्लोट32 रोबोट स्थिति में [7x रोबोट संयुक्त कोण, 1x ग्रिपर स्थिति, 16x रोबोट अंत-प्रभावक सजातीय मैट्रिक्स] शामिल हैं।
चरण/अवलोकन/कलाई_छवि छवि (128, 128, 3) uint8 कलाई कैमरा आरजीबी अवलोकन।
कदम/इनाम अदिश फ्लोट32 यदि प्रदान किया गया तो इनाम, डेमो के लिए अंतिम चरण पर 1।
  • उद्धरण :
@inproceedings{
    shah2023mutex,
    title={ {MUTEX}: Learning Unified Policies from Multimodal Task Specifications},
    author={Rutav Shah and Roberto Mart{\'\i}n-Mart{\'\i}n and Yuke Zhu},
    booktitle={7th Annual Conference on Robot Learning},
    year={2023},
    url={https://openreview.net/forum?id=PwqiqaaEzJ}
}