wit
Stay organized with collections
Save and categorize content based on your preferences.
Wikipedia-based Image Text (WIT) Dataset is a large multimodal multilingual
dataset. WIT is composed of a curated set of 37.6 million entity rich image-text
examples with 11.5 million unique images across 108 Wikipedia languages. Its
size enables WIT to be used as a pretraining dataset for multimodal machine
learning models.
Split |
Examples |
'test' |
210,166 |
'train' |
37,046,386 |
'val' |
261,024 |
FeaturesDict({
'attribution_passes_lang_id': bool,
'caption_alt_text_description': Text(shape=(), dtype=string),
'caption_attribution_description': Text(shape=(), dtype=string),
'caption_reference_description': Text(shape=(), dtype=string),
'context_page_description': Text(shape=(), dtype=string),
'context_section_description': Text(shape=(), dtype=string),
'hierarchical_section_title': Text(shape=(), dtype=string),
'image_url': Text(shape=(), dtype=string),
'is_main_image': bool,
'language': Text(shape=(), dtype=string),
'mime_type': Text(shape=(), dtype=string),
'original_height': int32,
'original_width': int32,
'page_changed_recently': bool,
'page_title': Text(shape=(), dtype=string),
'page_url': Text(shape=(), dtype=string),
'section_title': Text(shape=(), dtype=string),
})
Feature |
Class |
Shape |
Dtype |
Description |
|
FeaturesDict |
|
|
|
attribution_passes_lang_id |
Tensor |
|
bool |
|
caption_alt_text_description |
Text |
|
string |
|
caption_attribution_description |
Text |
|
string |
|
caption_reference_description |
Text |
|
string |
|
context_page_description |
Text |
|
string |
|
context_section_description |
Text |
|
string |
|
hierarchical_section_title |
Text |
|
string |
|
image_url |
Text |
|
string |
|
is_main_image |
Tensor |
|
bool |
|
language |
Text |
|
string |
|
mime_type |
Text |
|
string |
|
original_height |
Tensor |
|
int32 |
|
original_width |
Tensor |
|
int32 |
|
page_changed_recently |
Tensor |
|
bool |
|
page_title |
Text |
|
string |
|
page_url |
Text |
|
string |
|
section_title |
Text |
|
string |
|
@article{srinivasan2021wit,
title={WIT: Wikipedia-based Image Text Dataset for Multimodal Multilingual Machine Learning},
author={Srinivasan, Krishna and Raman, Karthik and Chen, Jiecao and Bendersky, Michael and Najork, Marc},
journal={arXiv preprint arXiv:2103.01913},
year={2021}
}
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates.
Last updated 2022-12-06 UTC.
[[["Easy to understand","easyToUnderstand","thumb-up"],["Solved my problem","solvedMyProblem","thumb-up"],["Other","otherUp","thumb-up"]],[["Missing the information I need","missingTheInformationINeed","thumb-down"],["Too complicated / too many steps","tooComplicatedTooManySteps","thumb-down"],["Out of date","outOfDate","thumb-down"],["Samples / code issue","samplesCodeIssue","thumb-down"],["Other","otherDown","thumb-down"]],["Last updated 2022-12-06 UTC."],[],[],null,["# wit\n\n\u003cbr /\u003e\n\n- **Description**:\n\nWikipedia-based Image Text (WIT) Dataset is a large multimodal multilingual\ndataset. WIT is composed of a curated set of 37.6 million entity rich image-text\nexamples with 11.5 million unique images across 108 Wikipedia languages. Its\nsize enables WIT to be used as a pretraining dataset for multimodal machine\nlearning models.\n\n- **Additional Documentation** :\n [Explore on Papers With Code\n north_east](https://paperswithcode.com/dataset/wit)\n\n- **Homepage** :\n \u003chttps://github.com/google-research-datasets/wit/\u003e\n\n- **Source code** :\n [`tfds.vision_language.wit.Wit`](https://github.com/tensorflow/datasets/tree/master/tensorflow_datasets/vision_language/wit/wit.py)\n\n- **Versions**:\n\n - `1.0.0`: Initial release. It loads the WIT dataset from \u003chttps://storage.googleapis.com/gresearch/wit/\u003e\n - **`1.1.0`** (default): Added `val` and `test` splits.\n- **Download size** : `25.20 GiB`\n\n- **Dataset size** : `81.17 GiB`\n\n- **Auto-cached**\n ([documentation](https://www.tensorflow.org/datasets/performances#auto-caching)):\n No\n\n- **Splits**:\n\n| Split | Examples |\n|-----------|------------|\n| `'test'` | 210,166 |\n| `'train'` | 37,046,386 |\n| `'val'` | 261,024 |\n\n- **Feature structure**:\n\n FeaturesDict({\n 'attribution_passes_lang_id': bool,\n 'caption_alt_text_description': Text(shape=(), dtype=string),\n 'caption_attribution_description': Text(shape=(), dtype=string),\n 'caption_reference_description': Text(shape=(), dtype=string),\n 'context_page_description': Text(shape=(), dtype=string),\n 'context_section_description': Text(shape=(), dtype=string),\n 'hierarchical_section_title': Text(shape=(), dtype=string),\n 'image_url': Text(shape=(), dtype=string),\n 'is_main_image': bool,\n 'language': Text(shape=(), dtype=string),\n 'mime_type': Text(shape=(), dtype=string),\n 'original_height': int32,\n 'original_width': int32,\n 'page_changed_recently': bool,\n 'page_title': Text(shape=(), dtype=string),\n 'page_url': Text(shape=(), dtype=string),\n 'section_title': Text(shape=(), dtype=string),\n })\n\n- **Feature documentation**:\n\n| Feature | Class | Shape | Dtype | Description |\n|---------------------------------|--------------|-------|--------|-------------|\n| | FeaturesDict | | | |\n| attribution_passes_lang_id | Tensor | | bool | |\n| caption_alt_text_description | Text | | string | |\n| caption_attribution_description | Text | | string | |\n| caption_reference_description | Text | | string | |\n| context_page_description | Text | | string | |\n| context_section_description | Text | | string | |\n| hierarchical_section_title | Text | | string | |\n| image_url | Text | | string | |\n| is_main_image | Tensor | | bool | |\n| language | Text | | string | |\n| mime_type | Text | | string | |\n| original_height | Tensor | | int32 | |\n| original_width | Tensor | | int32 | |\n| page_changed_recently | Tensor | | bool | |\n| page_title | Text | | string | |\n| page_url | Text | | string | |\n| section_title | Text | | string | |\n\n- **Supervised keys** (See\n [`as_supervised` doc](https://www.tensorflow.org/datasets/api_docs/python/tfds/load#args)):\n `None`\n\n- **Figure**\n ([tfds.show_examples](https://www.tensorflow.org/datasets/api_docs/python/tfds/visualization/show_examples)):\n Not supported.\n\n- **Examples**\n ([tfds.as_dataframe](https://www.tensorflow.org/datasets/api_docs/python/tfds/as_dataframe)):\n\nDisplay examples... \n\n- **Citation**:\n\n @article{srinivasan2021wit,\n title={WIT: Wikipedia-based Image Text Dataset for Multimodal Multilingual Machine Learning},\n author={Srinivasan, Krishna and Raman, Karthik and Chen, Jiecao and Bendersky, Michael and Najork, Marc},\n journal={arXiv preprint arXiv:2103.01913},\n year={2021}\n }"]]