places365_small
Stay organized with collections
Save and categorize content based on your preferences.
The Places365-Standard dataset contains 1.8 million train images from 365 scene
categories, which are used to train the Places365 CNNs. There are 50 images per
category in the validation set and 900 images per category in the testing set.
Split |
Examples |
'test' |
328,500 |
'train' |
1,803,460 |
'validation' |
36,500 |
FeaturesDict({
'filename': Text(shape=(), dtype=string),
'image': Image(shape=(256, 256, 3), dtype=uint8),
'label': ClassLabel(shape=(), dtype=int64, num_classes=365),
})
Feature |
Class |
Shape |
Dtype |
Description |
|
FeaturesDict |
|
|
|
filename |
Text |
|
string |
|
image |
Image |
(256, 256, 3) |
uint8 |
|
label |
ClassLabel |
|
int64 |
|

@article{zhou2017places,
title={Places: A 10 million Image Database for Scene Recognition},
author={Zhou, Bolei and Lapedriza, Agata and Khosla, Aditya and Oliva, Aude and Torralba, Antonio},
journal={IEEE Transactions on Pattern Analysis and Machine Intelligence},
year={2017},
publisher={IEEE}
}
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates.
Last updated 2024-06-01 UTC.
[[["Easy to understand","easyToUnderstand","thumb-up"],["Solved my problem","solvedMyProblem","thumb-up"],["Other","otherUp","thumb-up"]],[["Missing the information I need","missingTheInformationINeed","thumb-down"],["Too complicated / too many steps","tooComplicatedTooManySteps","thumb-down"],["Out of date","outOfDate","thumb-down"],["Samples / code issue","samplesCodeIssue","thumb-down"],["Other","otherDown","thumb-down"]],["Last updated 2024-06-01 UTC."],[],[],null,["# places365_small\n\n\u003cbr /\u003e\n\n- **Description**:\n\nThe Places365-Standard dataset contains 1.8 million train images from 365 scene\ncategories, which are used to train the Places365 CNNs. There are 50 images per\ncategory in the validation set and 900 images per category in the testing set.\n\n- **Additional Documentation** :\n [Explore on Papers With Code\n north_east](https://paperswithcode.com/dataset/places365)\n\n- **Homepage** : \u003chttp://places2.csail.mit.edu/\u003e\n\n- **Source code** :\n [`tfds.datasets.places365_small.Builder`](https://github.com/tensorflow/datasets/tree/master/tensorflow_datasets/datasets/places365_small/places365_small_dataset_builder.py)\n\n- **Versions**:\n\n - **`2.1.0`** (default): Changed the example keys in order to ease integration with KYD.\n- **Download size** : `29.27 GiB`\n\n- **Dataset size** : `27.85 GiB`\n\n- **Auto-cached**\n ([documentation](https://www.tensorflow.org/datasets/performances#auto-caching)):\n No\n\n- **Splits**:\n\n| Split | Examples |\n|----------------|-----------|\n| `'test'` | 328,500 |\n| `'train'` | 1,803,460 |\n| `'validation'` | 36,500 |\n\n- **Feature structure**:\n\n FeaturesDict({\n 'filename': Text(shape=(), dtype=string),\n 'image': Image(shape=(256, 256, 3), dtype=uint8),\n 'label': ClassLabel(shape=(), dtype=int64, num_classes=365),\n })\n\n- **Feature documentation**:\n\n| Feature | Class | Shape | Dtype | Description |\n|----------|--------------|---------------|--------|-------------|\n| | FeaturesDict | | | |\n| filename | Text | | string | |\n| image | Image | (256, 256, 3) | uint8 | |\n| label | ClassLabel | | int64 | |\n\n- **Supervised keys** (See\n [`as_supervised` doc](https://www.tensorflow.org/datasets/api_docs/python/tfds/load#args)):\n `('image', 'label', 'filename')`\n\n- **Figure**\n ([tfds.show_examples](https://www.tensorflow.org/datasets/api_docs/python/tfds/visualization/show_examples)):\n\n- **Examples** ([tfds.as_dataframe](https://www.tensorflow.org/datasets/api_docs/python/tfds/as_dataframe)):\n\nDisplay examples... \n\n- **Citation**:\n\n @article{zhou2017places,\n title={Places: A 10 million Image Database for Scene Recognition},\n author={Zhou, Bolei and Lapedriza, Agata and Khosla, Aditya and Oliva, Aude and Torralba, Antonio},\n journal={IEEE Transactions on Pattern Analysis and Machine Intelligence},\n year={2017},\n publisher={IEEE}\n }"]]