higgs
Stay organized with collections
Save and categorize content based on your preferences.
The data has been produced using Monte Carlo simulations. The first 21 features
(columns 2-22) are kinematic properties measured by the particle detectors in
the accelerator. The last seven features are functions of the first 21 features;
these are high-level features derived by physicists to help discriminate between
the two classes. There is an interest in using deep learning methods to obviate
the need for physicists to manually develop such features. Benchmark results
using Bayesian Decision Trees from a standard physics package and 5-layer neural
networks are presented in the original paper.
Split |
Examples |
'train' |
11,000,000 |
FeaturesDict({
'class_label': float32,
'jet_1_b-tag': float64,
'jet_1_eta': float64,
'jet_1_phi': float64,
'jet_1_pt': float64,
'jet_2_b-tag': float64,
'jet_2_eta': float64,
'jet_2_phi': float64,
'jet_2_pt': float64,
'jet_3_b-tag': float64,
'jet_3_eta': float64,
'jet_3_phi': float64,
'jet_3_pt': float64,
'jet_4_b-tag': float64,
'jet_4_eta': float64,
'jet_4_phi': float64,
'jet_4_pt': float64,
'lepton_eta': float64,
'lepton_pT': float64,
'lepton_phi': float64,
'm_bb': float64,
'm_jj': float64,
'm_jjj': float64,
'm_jlv': float64,
'm_lv': float64,
'm_wbb': float64,
'm_wwbb': float64,
'missing_energy_magnitude': float64,
'missing_energy_phi': float64,
})
Feature |
Class |
Shape |
Dtype |
Description |
|
FeaturesDict |
|
|
|
class_label |
Tensor |
|
float32 |
|
jet_1_b-tag |
Tensor |
|
float64 |
|
jet_1_eta |
Tensor |
|
float64 |
|
jet_1_phi |
Tensor |
|
float64 |
|
jet_1_pt |
Tensor |
|
float64 |
|
jet_2_b-tag |
Tensor |
|
float64 |
|
jet_2_eta |
Tensor |
|
float64 |
|
jet_2_phi |
Tensor |
|
float64 |
|
jet_2_pt |
Tensor |
|
float64 |
|
jet_3_b-tag |
Tensor |
|
float64 |
|
jet_3_eta |
Tensor |
|
float64 |
|
jet_3_phi |
Tensor |
|
float64 |
|
jet_3_pt |
Tensor |
|
float64 |
|
jet_4_b-tag |
Tensor |
|
float64 |
|
jet_4_eta |
Tensor |
|
float64 |
|
jet_4_phi |
Tensor |
|
float64 |
|
jet_4_pt |
Tensor |
|
float64 |
|
lepton_eta |
Tensor |
|
float64 |
|
lepton_pT |
Tensor |
|
float64 |
|
lepton_phi |
Tensor |
|
float64 |
|
m_bb |
Tensor |
|
float64 |
|
m_jj |
Tensor |
|
float64 |
|
m_jjj |
Tensor |
|
float64 |
|
m_jlv |
Tensor |
|
float64 |
|
m_lv |
Tensor |
|
float64 |
|
m_wbb |
Tensor |
|
float64 |
|
m_wwbb |
Tensor |
|
float64 |
|
missing_energy_magnitude |
Tensor |
|
float64 |
|
missing_energy_phi |
Tensor |
|
float64 |
|
@article{Baldi:2014kfa,
author = "Baldi, Pierre and Sadowski, Peter and Whiteson, Daniel",
title = "{Searching for Exotic Particles in High-Energy Physics
with Deep Learning}",
journal = "Nature Commun.",
volume = "5",
year = "2014",
pages = "4308",
doi = "10.1038/ncomms5308",
eprint = "1402.4735",
archivePrefix = "arXiv",
primaryClass = "hep-ph",
SLACcitation = "%%CITATION = ARXIV:1402.4735;%%"
}
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates.
Last updated 2022-11-23 UTC.
[[["Easy to understand","easyToUnderstand","thumb-up"],["Solved my problem","solvedMyProblem","thumb-up"],["Other","otherUp","thumb-up"]],[["Missing the information I need","missingTheInformationINeed","thumb-down"],["Too complicated / too many steps","tooComplicatedTooManySteps","thumb-down"],["Out of date","outOfDate","thumb-down"],["Samples / code issue","samplesCodeIssue","thumb-down"],["Other","otherDown","thumb-down"]],["Last updated 2022-11-23 UTC."],[],[],null,["# higgs\n\n\u003cbr /\u003e\n\n- **Description**:\n\nThe data has been produced using Monte Carlo simulations. The first 21 features\n(columns 2-22) are kinematic properties measured by the particle detectors in\nthe accelerator. The last seven features are functions of the first 21 features;\nthese are high-level features derived by physicists to help discriminate between\nthe two classes. There is an interest in using deep learning methods to obviate\nthe need for physicists to manually develop such features. Benchmark results\nusing Bayesian Decision Trees from a standard physics package and 5-layer neural\nnetworks are presented in the original paper.\n\n- **Additional Documentation** :\n [Explore on Papers With Code\n north_east](https://paperswithcode.com/dataset/higgs-data-set)\n\n- **Homepage** :\n \u003chttps://archive.ics.uci.edu/ml/datasets/HIGGS\u003e\n\n- **Source code** :\n [`tfds.structured.Higgs`](https://github.com/tensorflow/datasets/tree/master/tensorflow_datasets/structured/higgs.py)\n\n- **Versions**:\n\n - **`2.0.0`** (default): New split API (\u003chttps://tensorflow.org/datasets/splits\u003e)\n- **Download size** : `2.62 GiB`\n\n- **Dataset size** : `6.88 GiB`\n\n- **Auto-cached**\n ([documentation](https://www.tensorflow.org/datasets/performances#auto-caching)):\n No\n\n- **Splits**:\n\n| Split | Examples |\n|-----------|------------|\n| `'train'` | 11,000,000 |\n\n- **Feature structure**:\n\n FeaturesDict({\n 'class_label': float32,\n 'jet_1_b-tag': float64,\n 'jet_1_eta': float64,\n 'jet_1_phi': float64,\n 'jet_1_pt': float64,\n 'jet_2_b-tag': float64,\n 'jet_2_eta': float64,\n 'jet_2_phi': float64,\n 'jet_2_pt': float64,\n 'jet_3_b-tag': float64,\n 'jet_3_eta': float64,\n 'jet_3_phi': float64,\n 'jet_3_pt': float64,\n 'jet_4_b-tag': float64,\n 'jet_4_eta': float64,\n 'jet_4_phi': float64,\n 'jet_4_pt': float64,\n 'lepton_eta': float64,\n 'lepton_pT': float64,\n 'lepton_phi': float64,\n 'm_bb': float64,\n 'm_jj': float64,\n 'm_jjj': float64,\n 'm_jlv': float64,\n 'm_lv': float64,\n 'm_wbb': float64,\n 'm_wwbb': float64,\n 'missing_energy_magnitude': float64,\n 'missing_energy_phi': float64,\n })\n\n- **Feature documentation**:\n\n| Feature | Class | Shape | Dtype | Description |\n|--------------------------|--------------|-------|---------|-------------|\n| | FeaturesDict | | | |\n| class_label | Tensor | | float32 | |\n| jet_1_b-tag | Tensor | | float64 | |\n| jet_1_eta | Tensor | | float64 | |\n| jet_1_phi | Tensor | | float64 | |\n| jet_1_pt | Tensor | | float64 | |\n| jet_2_b-tag | Tensor | | float64 | |\n| jet_2_eta | Tensor | | float64 | |\n| jet_2_phi | Tensor | | float64 | |\n| jet_2_pt | Tensor | | float64 | |\n| jet_3_b-tag | Tensor | | float64 | |\n| jet_3_eta | Tensor | | float64 | |\n| jet_3_phi | Tensor | | float64 | |\n| jet_3_pt | Tensor | | float64 | |\n| jet_4_b-tag | Tensor | | float64 | |\n| jet_4_eta | Tensor | | float64 | |\n| jet_4_phi | Tensor | | float64 | |\n| jet_4_pt | Tensor | | float64 | |\n| lepton_eta | Tensor | | float64 | |\n| lepton_pT | Tensor | | float64 | |\n| lepton_phi | Tensor | | float64 | |\n| m_bb | Tensor | | float64 | |\n| m_jj | Tensor | | float64 | |\n| m_jjj | Tensor | | float64 | |\n| m_jlv | Tensor | | float64 | |\n| m_lv | Tensor | | float64 | |\n| m_wbb | Tensor | | float64 | |\n| m_wwbb | Tensor | | float64 | |\n| missing_energy_magnitude | Tensor | | float64 | |\n| missing_energy_phi | Tensor | | float64 | |\n\n- **Supervised keys** (See\n [`as_supervised` doc](https://www.tensorflow.org/datasets/api_docs/python/tfds/load#args)):\n `None`\n\n- **Figure**\n ([tfds.show_examples](https://www.tensorflow.org/datasets/api_docs/python/tfds/visualization/show_examples)):\n Not supported.\n\n- **Examples**\n ([tfds.as_dataframe](https://www.tensorflow.org/datasets/api_docs/python/tfds/as_dataframe)):\n\nDisplay examples... \n\n- **Citation**:\n\n @article{Baldi:2014kfa,\n author = \"Baldi, Pierre and Sadowski, Peter and Whiteson, Daniel\",\n title = \"{Searching for Exotic Particles in High-Energy Physics\n with Deep Learning}\",\n journal = \"Nature Commun.\",\n volume = \"5\",\n year = \"2014\",\n pages = \"4308\",\n doi = \"10.1038/ncomms5308\",\n eprint = \"1402.4735\",\n archivePrefix = \"arXiv\",\n primaryClass = \"hep-ph\",\n SLACcitation = \"%%CITATION = ARXIV:1402.4735;%%\"\n }"]]