dlr_sara_pour_converted_externally_to_rlds
Stay organized with collections
Save and categorize content based on your preferences.
pouring liquid from a bottle into a mug
Split |
Examples |
'train' |
100 |
FeaturesDict({
'episode_metadata': FeaturesDict({
'file_path': Text(shape=(), dtype=string),
}),
'steps': Dataset({
'action': Tensor(shape=(7,), dtype=float32, description=Robot action, consists of [3x robot EEF position, 3x robot EEF orientation yaw/pitch/roll calculated with scipy Rotation.as_euler(="zxy") Class].),
'discount': Scalar(shape=(), dtype=float32, description=Discount if provided, default to 1.),
'is_first': bool,
'is_last': bool,
'is_terminal': bool,
'language_embedding': Tensor(shape=(512,), dtype=float32, description=Kona language embedding. See https://tfhub.dev/google/universal-sentence-encoder-large/5),
'language_instruction': Text(shape=(), dtype=string),
'observation': FeaturesDict({
'image': Image(shape=(480, 640, 3), dtype=uint8, description=Main camera RGB observation.),
'state': Tensor(shape=(6,), dtype=float32, description=Robot state, consists of [3x robot EEF position, 3x robot EEF orientation yaw/pitch/roll calculated with scipy Rotation.as_euler(="zxy") Class].),
}),
'reward': Scalar(shape=(), dtype=float32, description=Reward if provided, 1 on final step for demos.),
}),
})
Feature |
Class |
Shape |
Dtype |
Description |
|
FeaturesDict |
|
|
|
episode_metadata |
FeaturesDict |
|
|
|
episode_metadata/file_path |
Text |
|
string |
Path to the original data file. |
steps |
Dataset |
|
|
|
steps/action |
Tensor |
(7,) |
float32 |
Robot action, consists of [3x robot EEF position, 3x robot EEF orientation yaw/pitch/roll calculated with scipy Rotation.as_euler(="zxy") Class]. |
steps/discount |
Scalar |
|
float32 |
Discount if provided, default to 1. |
steps/is_first |
Tensor |
|
bool |
|
steps/is_last |
Tensor |
|
bool |
|
steps/is_terminal |
Tensor |
|
bool |
|
steps/language_embedding |
Tensor |
(512,) |
float32 |
Kona language embedding. See https://tfhub.dev/google/universal-sentence-encoder-large/5 |
steps/language_instruction |
Text |
|
string |
Pour into the mug. |
steps/observation |
FeaturesDict |
|
|
|
steps/observation/image |
Image |
(480, 640, 3) |
uint8 |
Main camera RGB observation. |
steps/observation/state |
Tensor |
(6,) |
float32 |
Robot state, consists of [3x robot EEF position, 3x robot EEF orientation yaw/pitch/roll calculated with scipy Rotation.as_euler(="zxy") Class]. |
steps/reward |
Scalar |
|
float32 |
Reward if provided, 1 on final step for demos. |
@inproceedings{padalkar2023guiding,
title={Guiding Reinforcement Learning with Shared Control Templates},
author={Padalkar, Abhishek and Quere, Gabriel and Steinmetz, Franz and Raffin, Antonin and Nieuwenhuisen, Matthias and Silv{\'e}rio, Jo{\~a}o and Stulp, Freek},
booktitle={40th IEEE International Conference on Robotics and Automation, ICRA 2023},
year={2023},
organization={IEEE}
}
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates.
Last updated 2024-09-03 UTC.
[[["Easy to understand","easyToUnderstand","thumb-up"],["Solved my problem","solvedMyProblem","thumb-up"],["Other","otherUp","thumb-up"]],[["Missing the information I need","missingTheInformationINeed","thumb-down"],["Too complicated / too many steps","tooComplicatedTooManySteps","thumb-down"],["Out of date","outOfDate","thumb-down"],["Samples / code issue","samplesCodeIssue","thumb-down"],["Other","otherDown","thumb-down"]],["Last updated 2024-09-03 UTC."],[],[],null,["# dlr_sara_pour_converted_externally_to_rlds\n\n\u003cbr /\u003e\n\n- **Description**:\n\npouring liquid from a bottle into a mug\n\n- **Homepage** :\n \u003chttps://elib.dlr.de/193739/1/padalkar2023rlsct.pdf\u003e\n\n- **Source code** :\n [`tfds.robotics.rtx.DlrSaraPourConvertedExternallyToRlds`](https://github.com/tensorflow/datasets/tree/master/tensorflow_datasets/robotics/rtx/rtx.py)\n\n- **Versions**:\n\n - **`0.1.0`** (default): Initial release.\n- **Download size** : `Unknown size`\n\n- **Dataset size** : `2.92 GiB`\n\n- **Auto-cached**\n ([documentation](https://www.tensorflow.org/datasets/performances#auto-caching)):\n No\n\n- **Splits**:\n\n| Split | Examples |\n|-----------|----------|\n| `'train'` | 100 |\n\n- **Feature structure**:\n\n FeaturesDict({\n 'episode_metadata': FeaturesDict({\n 'file_path': Text(shape=(), dtype=string),\n }),\n 'steps': Dataset({\n 'action': Tensor(shape=(7,), dtype=float32, description=Robot action, consists of [3x robot EEF position, 3x robot EEF orientation yaw/pitch/roll calculated with scipy Rotation.as_euler(=\"zxy\") Class].),\n 'discount': Scalar(shape=(), dtype=float32, description=Discount if provided, default to 1.),\n 'is_first': bool,\n 'is_last': bool,\n 'is_terminal': bool,\n 'language_embedding': Tensor(shape=(512,), dtype=float32, description=Kona language embedding. See https://tfhub.dev/google/universal-sentence-encoder-large/5),\n 'language_instruction': Text(shape=(), dtype=string),\n 'observation': FeaturesDict({\n 'image': Image(shape=(480, 640, 3), dtype=uint8, description=Main camera RGB observation.),\n 'state': Tensor(shape=(6,), dtype=float32, description=Robot state, consists of [3x robot EEF position, 3x robot EEF orientation yaw/pitch/roll calculated with scipy Rotation.as_euler(=\"zxy\") Class].),\n }),\n 'reward': Scalar(shape=(), dtype=float32, description=Reward if provided, 1 on final step for demos.),\n }),\n })\n\n- **Feature documentation**:\n\n| Feature | Class | Shape | Dtype | Description |\n|----------------------------|--------------|---------------|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------|\n| | FeaturesDict | | | |\n| episode_metadata | FeaturesDict | | | |\n| episode_metadata/file_path | Text | | string | Path to the original data file. |\n| steps | Dataset | | | |\n| steps/action | Tensor | (7,) | float32 | Robot action, consists of \\[3x robot EEF position, 3x robot EEF orientation yaw/pitch/roll calculated with scipy Rotation.as_euler(=\"zxy\") Class\\]. |\n| steps/discount | Scalar | | float32 | Discount if provided, default to 1. |\n| steps/is_first | Tensor | | bool | |\n| steps/is_last | Tensor | | bool | |\n| steps/is_terminal | Tensor | | bool | |\n| steps/language_embedding | Tensor | (512,) | float32 | Kona language embedding. See \u003chttps://tfhub.dev/google/universal-sentence-encoder-large/5\u003e |\n| steps/language_instruction | Text | | string | Pour into the mug. |\n| steps/observation | FeaturesDict | | | |\n| steps/observation/image | Image | (480, 640, 3) | uint8 | Main camera RGB observation. |\n| steps/observation/state | Tensor | (6,) | float32 | Robot state, consists of \\[3x robot EEF position, 3x robot EEF orientation yaw/pitch/roll calculated with scipy Rotation.as_euler(=\"zxy\") Class\\]. |\n| steps/reward | Scalar | | float32 | Reward if provided, 1 on final step for demos. |\n\n- **Supervised keys** (See\n [`as_supervised` doc](https://www.tensorflow.org/datasets/api_docs/python/tfds/load#args)):\n `None`\n\n- **Figure**\n ([tfds.show_examples](https://www.tensorflow.org/datasets/api_docs/python/tfds/visualization/show_examples)):\n Not supported.\n\n- **Examples**\n ([tfds.as_dataframe](https://www.tensorflow.org/datasets/api_docs/python/tfds/as_dataframe)):\n\nDisplay examples... \n\n- **Citation**:\n\n @inproceedings{padalkar2023guiding,\n title={Guiding Reinforcement Learning with Shared Control Templates},\n author={Padalkar, Abhishek and Quere, Gabriel and Steinmetz, Franz and Raffin, Antonin and Nieuwenhuisen, Matthias and Silv{\\'e}rio, Jo{\\~a}o and Stulp, Freek},\n booktitle={40th IEEE International Conference on Robotics and Automation, ICRA 2023},\n year={2023},\n organization={IEEE}\n }"]]