cifar10
Stay organized with collections
Save and categorize content based on your preferences.
The CIFAR-10 dataset consists of 60000 32x32 colour images in 10 classes, with
6000 images per class. There are 50000 training images and 10000 test images.
Split |
Examples |
'test' |
10,000 |
'train' |
50,000 |
FeaturesDict({
'id': Text(shape=(), dtype=string),
'image': Image(shape=(32, 32, 3), dtype=uint8),
'label': ClassLabel(shape=(), dtype=int64, num_classes=10),
})
Feature |
Class |
Shape |
Dtype |
Description |
|
FeaturesDict |
|
|
|
id |
Text |
|
string |
|
image |
Image |
(32, 32, 3) |
uint8 |
|
label |
ClassLabel |
|
int64 |
|

@TECHREPORT{Krizhevsky09learningmultiple,
author = {Alex Krizhevsky},
title = {Learning multiple layers of features from tiny images},
institution = {},
year = {2009}
}
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates.
Last updated 2024-06-01 UTC.
[[["Easy to understand","easyToUnderstand","thumb-up"],["Solved my problem","solvedMyProblem","thumb-up"],["Other","otherUp","thumb-up"]],[["Missing the information I need","missingTheInformationINeed","thumb-down"],["Too complicated / too many steps","tooComplicatedTooManySteps","thumb-down"],["Out of date","outOfDate","thumb-down"],["Samples / code issue","samplesCodeIssue","thumb-down"],["Other","otherDown","thumb-down"]],["Last updated 2024-06-01 UTC."],[],[],null,["# cifar10\n\n\u003cbr /\u003e\n\n- **Description**:\n\nThe CIFAR-10 dataset consists of 60000 32x32 colour images in 10 classes, with\n6000 images per class. There are 50000 training images and 10000 test images.\n\n- **Additional Documentation** :\n [Explore on Papers With Code\n north_east](https://paperswithcode.com/dataset/cifar-10)\n\n- **Homepage** :\n [https://www.cs.toronto.edu/\\~kriz/cifar.html](https://www.cs.toronto.edu/%7Ekriz/cifar.html)\n\n- **Source code** :\n [`tfds.image_classification.Cifar10`](https://github.com/tensorflow/datasets/tree/master/tensorflow_datasets/image_classification/cifar.py)\n\n- **Versions**:\n\n - **`3.0.2`** (default): No release notes.\n- **Download size** : `162.17 MiB`\n\n- **Dataset size** : `132.40 MiB`\n\n- **Auto-cached**\n ([documentation](https://www.tensorflow.org/datasets/performances#auto-caching)):\n Yes\n\n- **Splits**:\n\n| Split | Examples |\n|-----------|----------|\n| `'test'` | 10,000 |\n| `'train'` | 50,000 |\n\n- **Feature structure**:\n\n FeaturesDict({\n 'id': Text(shape=(), dtype=string),\n 'image': Image(shape=(32, 32, 3), dtype=uint8),\n 'label': ClassLabel(shape=(), dtype=int64, num_classes=10),\n })\n\n- **Feature documentation**:\n\n| Feature | Class | Shape | Dtype | Description |\n|---------|--------------|-------------|--------|-------------|\n| | FeaturesDict | | | |\n| id | Text | | string | |\n| image | Image | (32, 32, 3) | uint8 | |\n| label | ClassLabel | | int64 | |\n\n- **Supervised keys** (See\n [`as_supervised` doc](https://www.tensorflow.org/datasets/api_docs/python/tfds/load#args)):\n `('image', 'label')`\n\n- **Figure**\n ([tfds.show_examples](https://www.tensorflow.org/datasets/api_docs/python/tfds/visualization/show_examples)):\n\n- **Examples** ([tfds.as_dataframe](https://www.tensorflow.org/datasets/api_docs/python/tfds/as_dataframe)):\n\nDisplay examples... \n\n- **Citation**:\n\n @TECHREPORT{Krizhevsky09learningmultiple,\n author = {Alex Krizhevsky},\n title = {Learning multiple layers of features from tiny images},\n institution = {},\n year = {2009}\n }"]]