anli
Stay organized with collections
Save and categorize content based on your preferences.
Adversarial NLI (ANLI) is a large-scale NLI benchmark dataset, collected via an
iterative, adversarial human-and-model-in-the-loop procedure.
FeaturesDict({
'context': Text(shape=(), dtype=string),
'hypothesis': Text(shape=(), dtype=string),
'label': ClassLabel(shape=(), dtype=int64, num_classes=3),
'uid': Text(shape=(), dtype=string),
})
Feature |
Class |
Shape |
Dtype |
Description |
|
FeaturesDict |
|
|
|
context |
Text |
|
string |
|
hypothesis |
Text |
|
string |
|
label |
ClassLabel |
|
int64 |
|
uid |
Text |
|
string |
|
@inproceedings{Nie2019AdversarialNA,
title = "Adversarial NLI: A New Benchmark for Natural Language Understanding",
author = "Nie, Yixin and
Williams, Adina and
Dinan, Emily and
Bansal, Mohit and
Weston, Jason and
Kiela, Douwe",
year="2019",
url ="https://arxiv.org/abs/1910.14599"
}
anli/r1 (default config)
Split |
Examples |
'test' |
1,000 |
'train' |
16,946 |
'validation' |
1,000 |
anli/r2
Split |
Examples |
'test' |
1,000 |
'train' |
45,460 |
'validation' |
1,000 |
anli/r3
Split |
Examples |
'test' |
1,200 |
'train' |
100,459 |
'validation' |
1,200 |
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates.
Last updated 2022-12-06 UTC.
[[["Easy to understand","easyToUnderstand","thumb-up"],["Solved my problem","solvedMyProblem","thumb-up"],["Other","otherUp","thumb-up"]],[["Missing the information I need","missingTheInformationINeed","thumb-down"],["Too complicated / too many steps","tooComplicatedTooManySteps","thumb-down"],["Out of date","outOfDate","thumb-down"],["Samples / code issue","samplesCodeIssue","thumb-down"],["Other","otherDown","thumb-down"]],["Last updated 2022-12-06 UTC."],[],[],null,["# anli\n\n\u003cbr /\u003e\n\n- **Description**:\n\nAdversarial NLI (ANLI) is a large-scale NLI benchmark dataset, collected via an\niterative, adversarial human-and-model-in-the-loop procedure.\n\n- **Additional Documentation** :\n [Explore on Papers With Code\n north_east](https://paperswithcode.com/dataset/anli)\n\n- **Homepage** :\n \u003chttps://github.com/facebookresearch/anli\u003e\n\n- **Source code** :\n [`tfds.datasets.anli.Builder`](https://github.com/tensorflow/datasets/tree/master/tensorflow_datasets/datasets/anli/anli_dataset_builder.py)\n\n- **Versions**:\n\n - **`0.1.0`** (default): No release notes.\n- **Download size** : `17.76 MiB`\n\n- **Auto-cached**\n ([documentation](https://www.tensorflow.org/datasets/performances#auto-caching)):\n Yes\n\n- **Feature structure**:\n\n FeaturesDict({\n 'context': Text(shape=(), dtype=string),\n 'hypothesis': Text(shape=(), dtype=string),\n 'label': ClassLabel(shape=(), dtype=int64, num_classes=3),\n 'uid': Text(shape=(), dtype=string),\n })\n\n- **Feature documentation**:\n\n| Feature | Class | Shape | Dtype | Description |\n|------------|--------------|-------|--------|-------------|\n| | FeaturesDict | | | |\n| context | Text | | string | |\n| hypothesis | Text | | string | |\n| label | ClassLabel | | int64 | |\n| uid | Text | | string | |\n\n- **Supervised keys** (See\n [`as_supervised` doc](https://www.tensorflow.org/datasets/api_docs/python/tfds/load#args)):\n `None`\n\n- **Figure**\n ([tfds.show_examples](https://www.tensorflow.org/datasets/api_docs/python/tfds/visualization/show_examples)):\n Not supported.\n\n- **Citation**:\n\n @inproceedings{Nie2019AdversarialNA,\n title = \"Adversarial NLI: A New Benchmark for Natural Language Understanding\",\n author = \"Nie, Yixin and\n Williams, Adina and\n Dinan, Emily and\n Bansal, Mohit and\n Weston, Jason and\n Kiela, Douwe\",\n year=\"2019\",\n url =\"https://arxiv.org/abs/1910.14599\"\n }\n\nanli/r1 (default config)\n------------------------\n\n- **Config description**: Round One\n\n- **Dataset size** : `9.04 MiB`\n\n- **Splits**:\n\n| Split | Examples |\n|----------------|----------|\n| `'test'` | 1,000 |\n| `'train'` | 16,946 |\n| `'validation'` | 1,000 |\n\n- **Examples** ([tfds.as_dataframe](https://www.tensorflow.org/datasets/api_docs/python/tfds/as_dataframe)):\n\nDisplay examples... \n\nanli/r2\n-------\n\n- **Config description**: Round Two\n\n- **Dataset size** : `22.39 MiB`\n\n- **Splits**:\n\n| Split | Examples |\n|----------------|----------|\n| `'test'` | 1,000 |\n| `'train'` | 45,460 |\n| `'validation'` | 1,000 |\n\n- **Examples** ([tfds.as_dataframe](https://www.tensorflow.org/datasets/api_docs/python/tfds/as_dataframe)):\n\nDisplay examples... \n\nanli/r3\n-------\n\n- **Config description**: Round Three\n\n- **Dataset size** : `47.03 MiB`\n\n- **Splits**:\n\n| Split | Examples |\n|----------------|----------|\n| `'test'` | 1,200 |\n| `'train'` | 100,459 |\n| `'validation'` | 1,200 |\n\n- **Examples** ([tfds.as_dataframe](https://www.tensorflow.org/datasets/api_docs/python/tfds/as_dataframe)):\n\nDisplay examples..."]]