shapes3d
Stay organized with collections
Save and categorize content based on your preferences.
3dshapes is a dataset of 3D shapes procedurally generated from 6 ground truth
independent latent factors. These factors are floor colour, wall colour,
object colour, scale, shape and orientation.
All possible combinations of these latents are present exactly once, generating
N = 480000 total images.
Latent factor values
- floor hue: 10 values linearly spaced in [0, 1]
- wall hue: 10 values linearly spaced in [0, 1]
- object hue: 10 values linearly spaced in [0, 1]
- scale: 8 values linearly spaced in [0, 1]
- shape: 4 values in [0, 1, 2, 3]
- orientation: 15 values linearly spaced in [-30, 30]
We varied one latent at a time (starting from orientation, then shape, etc), and
sequentially stored the images in fixed order in the images
array. The
corresponding values of the factors are stored in the same order in the labels
array.
Split |
Examples |
'train' |
480,000 |
FeaturesDict({
'image': Image(shape=(64, 64, 3), dtype=uint8),
'label_floor_hue': ClassLabel(shape=(), dtype=int64, num_classes=10),
'label_object_hue': ClassLabel(shape=(), dtype=int64, num_classes=10),
'label_orientation': ClassLabel(shape=(), dtype=int64, num_classes=15),
'label_scale': ClassLabel(shape=(), dtype=int64, num_classes=8),
'label_shape': ClassLabel(shape=(), dtype=int64, num_classes=4),
'label_wall_hue': ClassLabel(shape=(), dtype=int64, num_classes=10),
'value_floor_hue': float32,
'value_object_hue': float32,
'value_orientation': float32,
'value_scale': float32,
'value_shape': float32,
'value_wall_hue': float32,
})
Feature |
Class |
Shape |
Dtype |
Description |
|
FeaturesDict |
|
|
|
image |
Image |
(64, 64, 3) |
uint8 |
|
label_floor_hue |
ClassLabel |
|
int64 |
|
label_object_hue |
ClassLabel |
|
int64 |
|
label_orientation |
ClassLabel |
|
int64 |
|
label_scale |
ClassLabel |
|
int64 |
|
label_shape |
ClassLabel |
|
int64 |
|
label_wall_hue |
ClassLabel |
|
int64 |
|
value_floor_hue |
Tensor |
|
float32 |
|
value_object_hue |
Tensor |
|
float32 |
|
value_orientation |
Tensor |
|
float32 |
|
value_scale |
Tensor |
|
float32 |
|
value_shape |
Tensor |
|
float32 |
|
value_wall_hue |
Tensor |
|
float32 |
|

@misc{3dshapes18,
title={3D Shapes Dataset},
author={Burgess, Chris and Kim, Hyunjik},
howpublished={https://github.com/deepmind/3dshapes-dataset/},
year={2018}
}
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates.
Last updated 2024-06-01 UTC.
[[["Easy to understand","easyToUnderstand","thumb-up"],["Solved my problem","solvedMyProblem","thumb-up"],["Other","otherUp","thumb-up"]],[["Missing the information I need","missingTheInformationINeed","thumb-down"],["Too complicated / too many steps","tooComplicatedTooManySteps","thumb-down"],["Out of date","outOfDate","thumb-down"],["Samples / code issue","samplesCodeIssue","thumb-down"],["Other","otherDown","thumb-down"]],["Last updated 2024-06-01 UTC."],[],[],null,["# shapes3d\n\n\u003cbr /\u003e\n\n- **Description**:\n\n3dshapes is a dataset of 3D shapes procedurally generated from 6 ground truth\nindependent latent factors. These factors are *floor colour* , *wall colour* ,\n*object colour* , *scale* , *shape* and *orientation*.\n\nAll possible combinations of these latents are present exactly once, generating\nN = 480000 total images.\n\n### Latent factor values\n\n- floor hue: 10 values linearly spaced in \\[0, 1\\]\n- wall hue: 10 values linearly spaced in \\[0, 1\\]\n- object hue: 10 values linearly spaced in \\[0, 1\\]\n- scale: 8 values linearly spaced in \\[0, 1\\]\n- shape: 4 values in \\[0, 1, 2, 3\\]\n- orientation: 15 values linearly spaced in \\[-30, 30\\]\n\nWe varied one latent at a time (starting from orientation, then shape, etc), and\nsequentially stored the images in fixed order in the `images` array. The\ncorresponding values of the factors are stored in the same order in the `labels`\narray.\n\n- **Additional Documentation** :\n [Explore on Papers With Code\n north_east](https://paperswithcode.com/dataset/3d-shapes-dataset)\n\n- **Homepage** :\n \u003chttps://github.com/deepmind/3d-shapes\u003e\n\n- **Source code** :\n [`tfds.datasets.shapes3d.Builder`](https://github.com/tensorflow/datasets/tree/master/tensorflow_datasets/datasets/shapes3d/shapes3d_dataset_builder.py)\n\n- **Versions**:\n\n - **`2.0.0`** (default): New split API (\u003chttps://tensorflow.org/datasets/splits\u003e)\n- **Download size** : `255.18 MiB`\n\n- **Dataset size** : `1.68 GiB`\n\n- **Auto-cached**\n ([documentation](https://www.tensorflow.org/datasets/performances#auto-caching)):\n No\n\n- **Splits**:\n\n| Split | Examples |\n|-----------|----------|\n| `'train'` | 480,000 |\n\n- **Feature structure**:\n\n FeaturesDict({\n 'image': Image(shape=(64, 64, 3), dtype=uint8),\n 'label_floor_hue': ClassLabel(shape=(), dtype=int64, num_classes=10),\n 'label_object_hue': ClassLabel(shape=(), dtype=int64, num_classes=10),\n 'label_orientation': ClassLabel(shape=(), dtype=int64, num_classes=15),\n 'label_scale': ClassLabel(shape=(), dtype=int64, num_classes=8),\n 'label_shape': ClassLabel(shape=(), dtype=int64, num_classes=4),\n 'label_wall_hue': ClassLabel(shape=(), dtype=int64, num_classes=10),\n 'value_floor_hue': float32,\n 'value_object_hue': float32,\n 'value_orientation': float32,\n 'value_scale': float32,\n 'value_shape': float32,\n 'value_wall_hue': float32,\n })\n\n- **Feature documentation**:\n\n| Feature | Class | Shape | Dtype | Description |\n|-------------------|--------------|-------------|---------|-------------|\n| | FeaturesDict | | | |\n| image | Image | (64, 64, 3) | uint8 | |\n| label_floor_hue | ClassLabel | | int64 | |\n| label_object_hue | ClassLabel | | int64 | |\n| label_orientation | ClassLabel | | int64 | |\n| label_scale | ClassLabel | | int64 | |\n| label_shape | ClassLabel | | int64 | |\n| label_wall_hue | ClassLabel | | int64 | |\n| value_floor_hue | Tensor | | float32 | |\n| value_object_hue | Tensor | | float32 | |\n| value_orientation | Tensor | | float32 | |\n| value_scale | Tensor | | float32 | |\n| value_shape | Tensor | | float32 | |\n| value_wall_hue | Tensor | | float32 | |\n\n- **Supervised keys** (See\n [`as_supervised` doc](https://www.tensorflow.org/datasets/api_docs/python/tfds/load#args)):\n `None`\n\n- **Figure**\n ([tfds.show_examples](https://www.tensorflow.org/datasets/api_docs/python/tfds/visualization/show_examples)):\n\n- **Examples** ([tfds.as_dataframe](https://www.tensorflow.org/datasets/api_docs/python/tfds/as_dataframe)):\n\nDisplay examples... \n\n- **Citation**:\n\n @misc{3dshapes18,\n title={3D Shapes Dataset},\n author={Burgess, Chris and Kim, Hyunjik},\n howpublished={https://github.com/deepmind/3dshapes-dataset/},\n year={2018}\n }"]]