stanford_dogs
Stay organized with collections
Save and categorize content based on your preferences.
The Stanford Dogs dataset contains images of 120 breeds of dogs from around the
world. This dataset has been built using images and annotation from ImageNet for
the task of fine-grained image categorization. There are 20,580 images, out of
which 12,000 are used for training and 8580 for testing. Class labels and
bounding box annotations are provided for all the 12,000 images.
Split |
Examples |
'test' |
8,580 |
'train' |
12,000 |
FeaturesDict({
'image': Image(shape=(None, None, 3), dtype=uint8),
'image/filename': Text(shape=(), dtype=string),
'label': ClassLabel(shape=(), dtype=int64, num_classes=120),
'objects': Sequence({
'bbox': BBoxFeature(shape=(4,), dtype=float32),
}),
})
Feature |
Class |
Shape |
Dtype |
Description |
|
FeaturesDict |
|
|
|
image |
Image |
(None, None, 3) |
uint8 |
|
image/filename |
Text |
|
string |
|
label |
ClassLabel |
|
int64 |
|
objects |
Sequence |
|
|
|
objects/bbox |
BBoxFeature |
(4,) |
float32 |
|

@inproceedings{KhoslaYaoJayadevaprakashFeiFei_FGVC2011,
author = "Aditya Khosla and Nityananda Jayadevaprakash and Bangpeng Yao and
Li Fei-Fei",
title = "Novel Dataset for Fine-Grained Image Categorization",
booktitle = "First Workshop on Fine-Grained Visual Categorization,
IEEE Conference on Computer Vision and Pattern Recognition",
year = "2011",
month = "June",
address = "Colorado Springs, CO",
}
@inproceedings{imagenet_cvpr09,
AUTHOR = {Deng, J. and Dong, W. and Socher, R. and Li, L.-J. and
Li, K. and Fei-Fei, L.},
TITLE = { {ImageNet: A Large-Scale Hierarchical Image Database} },
BOOKTITLE = {CVPR09},
YEAR = {2009},
BIBSOURCE = "http://www.image-net.org/papers/imagenet_cvpr09.bib"}
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates.
Last updated 2023-01-13 UTC.
[[["Easy to understand","easyToUnderstand","thumb-up"],["Solved my problem","solvedMyProblem","thumb-up"],["Other","otherUp","thumb-up"]],[["Missing the information I need","missingTheInformationINeed","thumb-down"],["Too complicated / too many steps","tooComplicatedTooManySteps","thumb-down"],["Out of date","outOfDate","thumb-down"],["Samples / code issue","samplesCodeIssue","thumb-down"],["Other","otherDown","thumb-down"]],["Last updated 2023-01-13 UTC."],[],[],null,["# stanford_dogs\n\n\u003cbr /\u003e\n\n- **Description**:\n\nThe Stanford Dogs dataset contains images of 120 breeds of dogs from around the\nworld. This dataset has been built using images and annotation from ImageNet for\nthe task of fine-grained image categorization. There are 20,580 images, out of\nwhich 12,000 are used for training and 8580 for testing. Class labels and\nbounding box annotations are provided for all the 12,000 images.\n\n- **Additional Documentation** :\n [Explore on Papers With Code\n north_east](https://paperswithcode.com/dataset/stanford-dogs)\n\n- **Homepage** :\n \u003chttp://vision.stanford.edu/aditya86/ImageNetDogs/main.html\u003e\n\n- **Source code** :\n [`tfds.datasets.stanford_dogs.Builder`](https://github.com/tensorflow/datasets/tree/master/tensorflow_datasets/datasets/stanford_dogs/stanford_dogs_dataset_builder.py)\n\n- **Versions**:\n\n - **`0.2.0`** (default): No release notes.\n- **Download size** : `778.12 MiB`\n\n- **Dataset size** : `744.72 MiB`\n\n- **Auto-cached**\n ([documentation](https://www.tensorflow.org/datasets/performances#auto-caching)):\n No\n\n- **Splits**:\n\n| Split | Examples |\n|-----------|----------|\n| `'test'` | 8,580 |\n| `'train'` | 12,000 |\n\n- **Feature structure**:\n\n FeaturesDict({\n 'image': Image(shape=(None, None, 3), dtype=uint8),\n 'image/filename': Text(shape=(), dtype=string),\n 'label': ClassLabel(shape=(), dtype=int64, num_classes=120),\n 'objects': Sequence({\n 'bbox': BBoxFeature(shape=(4,), dtype=float32),\n }),\n })\n\n- **Feature documentation**:\n\n| Feature | Class | Shape | Dtype | Description |\n|----------------|--------------|-----------------|---------|-------------|\n| | FeaturesDict | | | |\n| image | Image | (None, None, 3) | uint8 | |\n| image/filename | Text | | string | |\n| label | ClassLabel | | int64 | |\n| objects | Sequence | | | |\n| objects/bbox | BBoxFeature | (4,) | float32 | |\n\n- **Supervised keys** (See\n [`as_supervised` doc](https://www.tensorflow.org/datasets/api_docs/python/tfds/load#args)):\n `('image', 'label')`\n\n- **Figure**\n ([tfds.show_examples](https://www.tensorflow.org/datasets/api_docs/python/tfds/visualization/show_examples)):\n\n- **Examples** ([tfds.as_dataframe](https://www.tensorflow.org/datasets/api_docs/python/tfds/as_dataframe)):\n\nDisplay examples... \n\n- **Citation**:\n\n @inproceedings{KhoslaYaoJayadevaprakashFeiFei_FGVC2011,\n author = \"Aditya Khosla and Nityananda Jayadevaprakash and Bangpeng Yao and\n Li Fei-Fei\",\n title = \"Novel Dataset for Fine-Grained Image Categorization\",\n booktitle = \"First Workshop on Fine-Grained Visual Categorization,\n IEEE Conference on Computer Vision and Pattern Recognition\",\n year = \"2011\",\n month = \"June\",\n address = \"Colorado Springs, CO\",\n }\n @inproceedings{imagenet_cvpr09,\n AUTHOR = {Deng, J. and Dong, W. and Socher, R. and Li, L.-J. and\n Li, K. and Fei-Fei, L.},\n TITLE = { {ImageNet: A Large-Scale Hierarchical Image Database} },\n BOOKTITLE = {CVPR09},\n YEAR = {2009},\n BIBSOURCE = \"http://www.image-net.org/papers/imagenet_cvpr09.bib\"}"]]