binarized_mnist
Stay organized with collections
Save and categorize content based on your preferences.
A specific binarization of the MNIST images originally used in (Salakhutdinov &
Murray, 2008). This dataset is frequently used to evaluate generative models of
images, so labels are not provided.
Split |
Examples |
'test' |
10,000 |
'train' |
50,000 |
'validation' |
10,000 |
FeaturesDict({
'image': Image(shape=(28, 28, 1), dtype=uint8),
})
Feature |
Class |
Shape |
Dtype |
Description |
|
FeaturesDict |
|
|
|
image |
Image |
(28, 28, 1) |
uint8 |
|

@inproceedings{salakhutdinov2008quantitative,
title={On the quantitative analysis of deep belief networks},
author={Salakhutdinov, Ruslan and Murray, Iain},
booktitle={Proceedings of the 25th international conference on Machine learning},
pages={872--879},
year={2008},
organization={ACM}
}
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates.
Last updated 2024-06-01 UTC.
[[["Easy to understand","easyToUnderstand","thumb-up"],["Solved my problem","solvedMyProblem","thumb-up"],["Other","otherUp","thumb-up"]],[["Missing the information I need","missingTheInformationINeed","thumb-down"],["Too complicated / too many steps","tooComplicatedTooManySteps","thumb-down"],["Out of date","outOfDate","thumb-down"],["Samples / code issue","samplesCodeIssue","thumb-down"],["Other","otherDown","thumb-down"]],["Last updated 2024-06-01 UTC."],[],[],null,["# binarized_mnist\n\n\u003cbr /\u003e\n\n- **Description**:\n\nA specific binarization of the MNIST images originally used in (Salakhutdinov \\&\nMurray, 2008). This dataset is frequently used to evaluate generative models of\nimages, so labels are not provided.\n\n- **Additional Documentation** :\n [Explore on Papers With Code\n north_east](https://paperswithcode.com/dataset/binarized-mnist)\n\n- **Homepage** :\n [http://www.dmi.usherb.ca/\\~larocheh/mlpython/_modules/datasets/binarized_mnist.html](http://www.dmi.usherb.ca/%7Elarocheh/mlpython/_modules/datasets/binarized_mnist.html)\n\n- **Source code** :\n [`tfds.datasets.binarized_mnist.Builder`](https://github.com/tensorflow/datasets/tree/master/tensorflow_datasets/datasets/binarized_mnist/binarized_mnist_dataset_builder.py)\n\n- **Versions**:\n\n - **`1.0.0`** (default): Initial Release\n- **Download size** : `104.68 MiB`\n\n- **Dataset size** : `11.68 MiB`\n\n- **Auto-cached**\n ([documentation](https://www.tensorflow.org/datasets/performances#auto-caching)):\n Yes\n\n- **Splits**:\n\n| Split | Examples |\n|----------------|----------|\n| `'test'` | 10,000 |\n| `'train'` | 50,000 |\n| `'validation'` | 10,000 |\n\n- **Feature structure**:\n\n FeaturesDict({\n 'image': Image(shape=(28, 28, 1), dtype=uint8),\n })\n\n- **Feature documentation**:\n\n| Feature | Class | Shape | Dtype | Description |\n|---------|--------------|-------------|-------|-------------|\n| | FeaturesDict | | | |\n| image | Image | (28, 28, 1) | uint8 | |\n\n- **Supervised keys** (See\n [`as_supervised` doc](https://www.tensorflow.org/datasets/api_docs/python/tfds/load#args)):\n `None`\n\n- **Figure**\n ([tfds.show_examples](https://www.tensorflow.org/datasets/api_docs/python/tfds/visualization/show_examples)):\n\n- **Examples** ([tfds.as_dataframe](https://www.tensorflow.org/datasets/api_docs/python/tfds/as_dataframe)):\n\nDisplay examples... \n\n- **Citation**:\n\n @inproceedings{salakhutdinov2008quantitative,\n title={On the quantitative analysis of deep belief networks},\n author={Salakhutdinov, Ruslan and Murray, Iain},\n booktitle={Proceedings of the 25th international conference on Machine learning},\n pages={872--879},\n year={2008},\n organization={ACM}\n }"]]