coco
Stay organized with collections
Save and categorize content based on your preferences.
COCO is a large-scale object detection, segmentation, and captioning dataset.
@article{DBLP:journals/corr/LinMBHPRDZ14,
author = {Tsung{-}Yi Lin and
Michael Maire and
Serge J. Belongie and
Lubomir D. Bourdev and
Ross B. Girshick and
James Hays and
Pietro Perona and
Deva Ramanan and
Piotr Doll{'{a} }r and
C. Lawrence Zitnick},
title = {Microsoft {COCO:} Common Objects in Context},
journal = {CoRR},
volume = {abs/1405.0312},
year = {2014},
url = {http://arxiv.org/abs/1405.0312},
archivePrefix = {arXiv},
eprint = {1405.0312},
timestamp = {Mon, 13 Aug 2018 16:48:13 +0200},
biburl = {https://dblp.org/rec/bib/journals/corr/LinMBHPRDZ14},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
coco/2014 (default config)
Split |
Examples |
'test' |
40,775 |
'test2015' |
81,434 |
'train' |
82,783 |
'validation' |
40,504 |
FeaturesDict({
'image': Image(shape=(None, None, 3), dtype=uint8),
'image/filename': Text(shape=(), dtype=string),
'image/id': int64,
'objects': Sequence({
'area': int64,
'bbox': BBoxFeature(shape=(4,), dtype=float32),
'id': int64,
'is_crowd': bool,
'label': ClassLabel(shape=(), dtype=int64, num_classes=80),
}),
})
Feature |
Class |
Shape |
Dtype |
Description |
|
FeaturesDict |
|
|
|
image |
Image |
(None, None, 3) |
uint8 |
|
image/filename |
Text |
|
string |
|
image/id |
Tensor |
|
int64 |
|
objects |
Sequence |
|
|
|
objects/area |
Tensor |
|
int64 |
|
objects/bbox |
BBoxFeature |
(4,) |
float32 |
|
objects/id |
Tensor |
|
int64 |
|
objects/is_crowd |
Tensor |
|
bool |
|
objects/label |
ClassLabel |
|
int64 |
|

coco/2017
Split |
Examples |
'test' |
40,670 |
'train' |
118,287 |
'validation' |
5,000 |
FeaturesDict({
'image': Image(shape=(None, None, 3), dtype=uint8),
'image/filename': Text(shape=(), dtype=string),
'image/id': int64,
'objects': Sequence({
'area': int64,
'bbox': BBoxFeature(shape=(4,), dtype=float32),
'id': int64,
'is_crowd': bool,
'label': ClassLabel(shape=(), dtype=int64, num_classes=80),
}),
})
Feature |
Class |
Shape |
Dtype |
Description |
|
FeaturesDict |
|
|
|
image |
Image |
(None, None, 3) |
uint8 |
|
image/filename |
Text |
|
string |
|
image/id |
Tensor |
|
int64 |
|
objects |
Sequence |
|
|
|
objects/area |
Tensor |
|
int64 |
|
objects/bbox |
BBoxFeature |
(4,) |
float32 |
|
objects/id |
Tensor |
|
int64 |
|
objects/is_crowd |
Tensor |
|
bool |
|
objects/label |
ClassLabel |
|
int64 |
|

coco/2017_panoptic
Split |
Examples |
'train' |
118,287 |
'validation' |
5,000 |
FeaturesDict({
'image': Image(shape=(None, None, 3), dtype=uint8),
'image/filename': Text(shape=(), dtype=string),
'image/id': int64,
'panoptic_image': Image(shape=(None, None, 3), dtype=uint8),
'panoptic_image/filename': Text(shape=(), dtype=string),
'panoptic_objects': Sequence({
'area': int64,
'bbox': BBoxFeature(shape=(4,), dtype=float32),
'id': int64,
'is_crowd': bool,
'label': ClassLabel(shape=(), dtype=int64, num_classes=133),
}),
})
Feature |
Class |
Shape |
Dtype |
Description |
|
FeaturesDict |
|
|
|
image
|
Image
|
(None,
None, 3) |
uint8
|
|
image/filename |
Text |
|
string |
|
image/id |
Tensor |
|
int64 |
|
panoptic_image
|
Image
|
(None,
None, 3) |
uint8
|
|
panoptic_image/filename |
Text |
|
string |
|
panoptic_objects |
Sequence |
|
|
|
panoptic_objects/area |
Tensor |
|
int64 |
|
panoptic_objects/bbox |
BBoxFeature |
(4,) |
float32 |
|
panoptic_objects/id |
Tensor |
|
int64 |
|
panoptic_objects/is_crowd |
Tensor |
|
bool |
|
panoptic_objects/label |
ClassLabel |
|
int64 |
|
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates.
Last updated 2024-06-01 UTC.
[[["Easy to understand","easyToUnderstand","thumb-up"],["Solved my problem","solvedMyProblem","thumb-up"],["Other","otherUp","thumb-up"]],[["Missing the information I need","missingTheInformationINeed","thumb-down"],["Too complicated / too many steps","tooComplicatedTooManySteps","thumb-down"],["Out of date","outOfDate","thumb-down"],["Samples / code issue","samplesCodeIssue","thumb-down"],["Other","otherDown","thumb-down"]],["Last updated 2024-06-01 UTC."],[],[],null,["# coco\n\n\u003cbr /\u003e\n\n- **Description**:\n\nCOCO is a large-scale object detection, segmentation, and captioning dataset.\n| **Note:** \\* Some images from the train and validation sets don't have annotations. \\* Coco 2014 and 2017 uses the same images, but different train/val/test splits \\* The test split don't have any annotations (only images). \\* Coco defines 91 classes but the data only uses 80 classes. \\* Panotptic annotations defines defines 200 classes but only uses 133.\n\n- **Additional Documentation** :\n [Explore on Papers With Code\n north_east](https://paperswithcode.com/dataset/coco)\n\n- **Homepage** : \u003chttp://cocodataset.org/#home\u003e\n\n- **Source code** :\n [`tfds.object_detection.Coco`](https://github.com/tensorflow/datasets/tree/master/tensorflow_datasets/object_detection/coco.py)\n\n- **Versions**:\n\n - **`1.1.0`** (default): No release notes.\n- **Auto-cached**\n ([documentation](https://www.tensorflow.org/datasets/performances#auto-caching)):\n No\n\n- **Supervised keys** (See\n [`as_supervised` doc](https://www.tensorflow.org/datasets/api_docs/python/tfds/load#args)):\n `None`\n\n- **Citation**:\n\n @article{DBLP:journals/corr/LinMBHPRDZ14,\n author = {Tsung{-}Yi Lin and\n Michael Maire and\n Serge J. Belongie and\n Lubomir D. Bourdev and\n Ross B. Girshick and\n James Hays and\n Pietro Perona and\n Deva Ramanan and\n Piotr Doll{'{a} }r and\n C. Lawrence Zitnick},\n title = {Microsoft {COCO:} Common Objects in Context},\n journal = {CoRR},\n volume = {abs/1405.0312},\n year = {2014},\n url = {http://arxiv.org/abs/1405.0312},\n archivePrefix = {arXiv},\n eprint = {1405.0312},\n timestamp = {Mon, 13 Aug 2018 16:48:13 +0200},\n biburl = {https://dblp.org/rec/bib/journals/corr/LinMBHPRDZ14},\n bibsource = {dblp computer science bibliography, https://dblp.org}\n }\n\ncoco/2014 (default config)\n--------------------------\n\n- **Config description**: This version contains images, bounding boxes and\n labels for the 2014 version.\n\n- **Download size** : `37.57 GiB`\n\n- **Dataset size** : `37.35 GiB`\n\n- **Splits**:\n\n| Split | Examples |\n|----------------|----------|\n| `'test'` | 40,775 |\n| `'test2015'` | 81,434 |\n| `'train'` | 82,783 |\n| `'validation'` | 40,504 |\n\n- **Feature structure**:\n\n FeaturesDict({\n 'image': Image(shape=(None, None, 3), dtype=uint8),\n 'image/filename': Text(shape=(), dtype=string),\n 'image/id': int64,\n 'objects': Sequence({\n 'area': int64,\n 'bbox': BBoxFeature(shape=(4,), dtype=float32),\n 'id': int64,\n 'is_crowd': bool,\n 'label': ClassLabel(shape=(), dtype=int64, num_classes=80),\n }),\n })\n\n- **Feature documentation**:\n\n| Feature | Class | Shape | Dtype | Description |\n|------------------|--------------|-----------------|---------|-------------|\n| | FeaturesDict | | | |\n| image | Image | (None, None, 3) | uint8 | |\n| image/filename | Text | | string | |\n| image/id | Tensor | | int64 | |\n| objects | Sequence | | | |\n| objects/area | Tensor | | int64 | |\n| objects/bbox | BBoxFeature | (4,) | float32 | |\n| objects/id | Tensor | | int64 | |\n| objects/is_crowd | Tensor | | bool | |\n| objects/label | ClassLabel | | int64 | |\n\n- **Figure** ([tfds.show_examples](https://www.tensorflow.org/datasets/api_docs/python/tfds/visualization/show_examples)):\n\n- **Examples** ([tfds.as_dataframe](https://www.tensorflow.org/datasets/api_docs/python/tfds/as_dataframe)):\n\nDisplay examples... \n\ncoco/2017\n---------\n\n- **Config description**: This version contains images, bounding boxes and\n labels for the 2017 version.\n\n- **Download size** : `25.20 GiB`\n\n- **Dataset size** : `24.98 GiB`\n\n- **Splits**:\n\n| Split | Examples |\n|----------------|----------|\n| `'test'` | 40,670 |\n| `'train'` | 118,287 |\n| `'validation'` | 5,000 |\n\n- **Feature structure**:\n\n FeaturesDict({\n 'image': Image(shape=(None, None, 3), dtype=uint8),\n 'image/filename': Text(shape=(), dtype=string),\n 'image/id': int64,\n 'objects': Sequence({\n 'area': int64,\n 'bbox': BBoxFeature(shape=(4,), dtype=float32),\n 'id': int64,\n 'is_crowd': bool,\n 'label': ClassLabel(shape=(), dtype=int64, num_classes=80),\n }),\n })\n\n- **Feature documentation**:\n\n| Feature | Class | Shape | Dtype | Description |\n|------------------|--------------|-----------------|---------|-------------|\n| | FeaturesDict | | | |\n| image | Image | (None, None, 3) | uint8 | |\n| image/filename | Text | | string | |\n| image/id | Tensor | | int64 | |\n| objects | Sequence | | | |\n| objects/area | Tensor | | int64 | |\n| objects/bbox | BBoxFeature | (4,) | float32 | |\n| objects/id | Tensor | | int64 | |\n| objects/is_crowd | Tensor | | bool | |\n| objects/label | ClassLabel | | int64 | |\n\n- **Figure** ([tfds.show_examples](https://www.tensorflow.org/datasets/api_docs/python/tfds/visualization/show_examples)):\n\n- **Examples** ([tfds.as_dataframe](https://www.tensorflow.org/datasets/api_docs/python/tfds/as_dataframe)):\n\nDisplay examples... \n\ncoco/2017_panoptic\n------------------\n\n- **Config description**: This version contains images, bounding boxes and\n labels for the 2017 version.\n\n- **Download size** : `19.57 GiB`\n\n- **Dataset size** : `19.63 GiB`\n\n- **Splits**:\n\n| Split | Examples |\n|----------------|----------|\n| `'train'` | 118,287 |\n| `'validation'` | 5,000 |\n\n- **Feature structure**:\n\n FeaturesDict({\n 'image': Image(shape=(None, None, 3), dtype=uint8),\n 'image/filename': Text(shape=(), dtype=string),\n 'image/id': int64,\n 'panoptic_image': Image(shape=(None, None, 3), dtype=uint8),\n 'panoptic_image/filename': Text(shape=(), dtype=string),\n 'panoptic_objects': Sequence({\n 'area': int64,\n 'bbox': BBoxFeature(shape=(4,), dtype=float32),\n 'id': int64,\n 'is_crowd': bool,\n 'label': ClassLabel(shape=(), dtype=int64, num_classes=133),\n }),\n })\n\n- **Feature documentation**:\n\n| Feature | Class | Shape | Dtype | Description |\n|---------------------------|--------------|-----------------|---------|-------------|\n| | FeaturesDict | | | |\n| image | Image | (None, None, 3) | uint8 | |\n| image/filename | Text | | string | |\n| image/id | Tensor | | int64 | |\n| panoptic_image | Image | (None, None, 3) | uint8 | |\n| panoptic_image/filename | Text | | string | |\n| panoptic_objects | Sequence | | | |\n| panoptic_objects/area | Tensor | | int64 | |\n| panoptic_objects/bbox | BBoxFeature | (4,) | float32 | |\n| panoptic_objects/id | Tensor | | int64 | |\n| panoptic_objects/is_crowd | Tensor | | bool | |\n| panoptic_objects/label | ClassLabel | | int64 | |\n\n- **Figure**\n ([tfds.show_examples](https://www.tensorflow.org/datasets/api_docs/python/tfds/visualization/show_examples)):\n Not supported.\n\n- **Examples**\n ([tfds.as_dataframe](https://www.tensorflow.org/datasets/api_docs/python/tfds/as_dataframe)):\n\nDisplay examples..."]]