movie_rationales
Stay organized with collections
Save and categorize content based on your preferences.
The movie rationale dataset contains human annotated rationales for movie
reviews.
Split |
Examples |
'test' |
199 |
'train' |
1,600 |
'validation' |
200 |
FeaturesDict({
'evidences': Sequence(Text(shape=(), dtype=string)),
'label': ClassLabel(shape=(), dtype=int64, num_classes=2),
'review': Text(shape=(), dtype=string),
})
Feature |
Class |
Shape |
Dtype |
Description |
|
FeaturesDict |
|
|
|
evidences |
Sequence(Text) |
(None,) |
string |
|
label |
ClassLabel |
|
int64 |
|
review |
Text |
|
string |
|
@unpublished{eraser2019,
title = {ERASER: A Benchmark to Evaluate Rationalized NLP Models},
author = {Jay DeYoung and Sarthak Jain and Nazneen Fatema Rajani and Eric Lehman and Caiming Xiong and Richard Socher and Byron C. Wallace}
}
@InProceedings{zaidan-eisner-piatko-2008:nips,
author = {Omar F. Zaidan and Jason Eisner and Christine Piatko},
title = {Machine Learning with Annotator Rationales to Reduce Annotation Cost},
booktitle = {Proceedings of the NIPS*2008 Workshop on Cost Sensitive Learning},
month = {December},
year = {2008}
}
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates.
Last updated 2022-12-06 UTC.
[[["Easy to understand","easyToUnderstand","thumb-up"],["Solved my problem","solvedMyProblem","thumb-up"],["Other","otherUp","thumb-up"]],[["Missing the information I need","missingTheInformationINeed","thumb-down"],["Too complicated / too many steps","tooComplicatedTooManySteps","thumb-down"],["Out of date","outOfDate","thumb-down"],["Samples / code issue","samplesCodeIssue","thumb-down"],["Other","otherDown","thumb-down"]],["Last updated 2022-12-06 UTC."],[],[],null,["# movie_rationales\n\n\u003cbr /\u003e\n\n- **Description**:\n\nThe movie rationale dataset contains human annotated rationales for movie\nreviews.\n\n- **Homepage** :\n [http://www.cs.jhu.edu/\\~ozaidan/rationales/](http://www.cs.jhu.edu/%7Eozaidan/rationales/)\n\n- **Source code** :\n [`tfds.text.MovieRationales`](https://github.com/tensorflow/datasets/tree/master/tensorflow_datasets/text/movie_rationales.py)\n\n- **Versions**:\n\n - **`0.1.0`** (default): No release notes.\n- **Download size** : `3.72 MiB`\n\n- **Dataset size** : `8.37 MiB`\n\n- **Auto-cached**\n ([documentation](https://www.tensorflow.org/datasets/performances#auto-caching)):\n Yes\n\n- **Splits**:\n\n| Split | Examples |\n|----------------|----------|\n| `'test'` | 199 |\n| `'train'` | 1,600 |\n| `'validation'` | 200 |\n\n- **Feature structure**:\n\n FeaturesDict({\n 'evidences': Sequence(Text(shape=(), dtype=string)),\n 'label': ClassLabel(shape=(), dtype=int64, num_classes=2),\n 'review': Text(shape=(), dtype=string),\n })\n\n- **Feature documentation**:\n\n| Feature | Class | Shape | Dtype | Description |\n|-----------|----------------|---------|--------|-------------|\n| | FeaturesDict | | | |\n| evidences | Sequence(Text) | (None,) | string | |\n| label | ClassLabel | | int64 | |\n| review | Text | | string | |\n\n- **Supervised keys** (See\n [`as_supervised` doc](https://www.tensorflow.org/datasets/api_docs/python/tfds/load#args)):\n `None`\n\n- **Figure**\n ([tfds.show_examples](https://www.tensorflow.org/datasets/api_docs/python/tfds/visualization/show_examples)):\n Not supported.\n\n- **Examples**\n ([tfds.as_dataframe](https://www.tensorflow.org/datasets/api_docs/python/tfds/as_dataframe)):\n\nDisplay examples... \n\n- **Citation**:\n\n @unpublished{eraser2019,\n title = {ERASER: A Benchmark to Evaluate Rationalized NLP Models},\n author = {Jay DeYoung and Sarthak Jain and Nazneen Fatema Rajani and Eric Lehman and Caiming Xiong and Richard Socher and Byron C. Wallace}\n }\n @InProceedings{zaidan-eisner-piatko-2008:nips,\n author = {Omar F. Zaidan and Jason Eisner and Christine Piatko},\n title = {Machine Learning with Annotator Rationales to Reduce Annotation Cost},\n booktitle = {Proceedings of the NIPS*2008 Workshop on Cost Sensitive Learning},\n month = {December},\n year = {2008}\n }"]]