- Description:
Franka picking objects and insertion tasks
- Source code: - tfds.robotics.rtx.IamlabCmuPickupInsertConvertedExternallyToRlds
- Versions: - 0.1.0(default): Initial release.
 
- Download size: - Unknown size
- Dataset size: - 50.29 GiB
- Auto-cached (documentation): No 
- Splits: 
| Split | Examples | 
|---|---|
| 'train' | 631 | 
- Feature structure:
FeaturesDict({
    'episode_metadata': FeaturesDict({
        'file_path': Text(shape=(), dtype=string),
    }),
    'steps': Dataset({
        'action': Tensor(shape=(8,), dtype=float32, description=Robot action, consists of [3x end-effector position, 4x end-effector quaternion, 1x gripper open/close].),
        'discount': Scalar(shape=(), dtype=float32, description=Discount if provided, default to 1.),
        'is_first': bool,
        'is_last': bool,
        'is_terminal': bool,
        'language_embedding': Tensor(shape=(512,), dtype=float32, description=Kona language embedding. See https://tfhub.dev/google/universal-sentence-encoder-large/5),
        'language_instruction': Text(shape=(), dtype=string),
        'observation': FeaturesDict({
            'image': Image(shape=(360, 640, 3), dtype=uint8, description=Main camera RGB observation.),
            'state': Tensor(shape=(20,), dtype=float32, description=Robot state, consists of [7x robot joint angles, 1x gripper status, 6x joint torques, 6x end-effector force].),
            'wrist_image': Image(shape=(240, 320, 3), dtype=uint8, description=Wrist camera RGB observation.),
        }),
        'reward': Scalar(shape=(), dtype=float32, description=Reward if provided, 1 on final step for demos.),
    }),
})
- Feature documentation:
| Feature | Class | Shape | Dtype | Description | 
|---|---|---|---|---|
| FeaturesDict | ||||
| episode_metadata | FeaturesDict | |||
| episode_metadata/file_path | Text | string | Path to the original data file. | |
| steps | Dataset | |||
| steps/action | Tensor | (8,) | float32 | Robot action, consists of [3x end-effector position, 4x end-effector quaternion, 1x gripper open/close]. | 
| steps/discount | Scalar | float32 | Discount if provided, default to 1. | |
| steps/is_first | Tensor | bool | ||
| steps/is_last | Tensor | bool | ||
| steps/is_terminal | Tensor | bool | ||
| steps/language_embedding | Tensor | (512,) | float32 | Kona language embedding. See https://tfhub.dev/google/universal-sentence-encoder-large/5 | 
| steps/language_instruction | Text | string | Language Instruction. | |
| steps/observation | FeaturesDict | |||
| steps/observation/image | Image | (360, 640, 3) | uint8 | Main camera RGB observation. | 
| steps/observation/state | Tensor | (20,) | float32 | Robot state, consists of [7x robot joint angles, 1x gripper status, 6x joint torques, 6x end-effector force]. | 
| steps/observation/wrist_image | Image | (240, 320, 3) | uint8 | Wrist camera RGB observation. | 
| steps/reward | Scalar | float32 | Reward if provided, 1 on final step for demos. | 
- Supervised keys (See - as_superviseddoc):- None
- Figure (tfds.show_examples): Not supported. 
- Examples (tfds.as_dataframe): 
- Citation:
@inproceedings{
saxena2023multiresolution,
title={Multi-Resolution Sensing for Real-Time Control with Vision-Language Models},
author={Saumya Saxena and Mohit Sharma and Oliver Kroemer},
booktitle={7th Annual Conference on Robot Learning},
year={2023},
url={https://openreview.net/forum?id=WuBv9-IGDUA}
}