duke_ultrasound
Stay organized with collections
Save and categorize content based on your preferences.
DukeUltrasound is an ultrasound dataset collected at Duke University with a
Verasonics c52v probe. It contains delay-and-sum (DAS) beamformed data as well
as data post-processed with Siemens Dynamic TCE for speckle reduction, contrast
enhancement and improvement in conspicuity of anatomical structures. These data
were collected with support from the National Institute of Biomedical Imaging
and Bioengineering under Grant R01-EB026574 and National Institutes of Health
under Grant 5T32GM007171-44. A usage example is available
here.
Split |
Examples |
'A' |
1,362 |
'B' |
1,194 |
'MARK' |
420 |
'test' |
438 |
'train' |
2,556 |
'validation' |
278 |
FeaturesDict({
'das': FeaturesDict({
'dB': Tensor(shape=(None,), dtype=float32),
'imag': Tensor(shape=(None,), dtype=float32),
'real': Tensor(shape=(None,), dtype=float32),
}),
'dtce': Tensor(shape=(None,), dtype=float32),
'f0_hz': float32,
'final_angle': float32,
'final_radius': float32,
'focus_cm': float32,
'harmonic': bool,
'height': uint32,
'initial_angle': float32,
'initial_radius': float32,
'probe': string,
'scanner': string,
'target': string,
'timestamp_id': uint32,
'voltage': float32,
'width': uint32,
})
Feature |
Class |
Shape |
Dtype |
Description |
|
FeaturesDict |
|
|
|
das |
FeaturesDict |
|
|
|
das/dB |
Tensor |
(None,) |
float32 |
|
das/imag |
Tensor |
(None,) |
float32 |
|
das/real |
Tensor |
(None,) |
float32 |
|
dtce |
Tensor |
(None,) |
float32 |
|
f0_hz |
Tensor |
|
float32 |
|
final_angle |
Tensor |
|
float32 |
|
final_radius |
Tensor |
|
float32 |
|
focus_cm |
Tensor |
|
float32 |
|
harmonic |
Tensor |
|
bool |
|
height |
Tensor |
|
uint32 |
|
initial_angle |
Tensor |
|
float32 |
|
initial_radius |
Tensor |
|
float32 |
|
probe |
Tensor |
|
string |
|
scanner |
Tensor |
|
string |
|
target |
Tensor |
|
string |
|
timestamp_id |
Tensor |
|
uint32 |
|
voltage |
Tensor |
|
float32 |
|
width |
Tensor |
|
uint32 |
|
@article{DBLP:journals/corr/abs-1908-05782,
author = {Ouwen Huang and
Will Long and
Nick Bottenus and
Gregg E. Trahey and
Sina Farsiu and
Mark L. Palmeri},
title = {MimickNet, Matching Clinical Post-Processing Under Realistic Black-Box
Constraints},
journal = {CoRR},
volume = {abs/1908.05782},
year = {2019},
url = {http://arxiv.org/abs/1908.05782},
archivePrefix = {arXiv},
eprint = {1908.05782},
timestamp = {Mon, 19 Aug 2019 13:21:03 +0200},
biburl = {https://dblp.org/rec/bib/journals/corr/abs-1908-05782},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates.
Last updated 2025-03-14 UTC.
[[["Easy to understand","easyToUnderstand","thumb-up"],["Solved my problem","solvedMyProblem","thumb-up"],["Other","otherUp","thumb-up"]],[["Missing the information I need","missingTheInformationINeed","thumb-down"],["Too complicated / too many steps","tooComplicatedTooManySteps","thumb-down"],["Out of date","outOfDate","thumb-down"],["Samples / code issue","samplesCodeIssue","thumb-down"],["Other","otherDown","thumb-down"]],["Last updated 2025-03-14 UTC."],[],[],null,["# duke_ultrasound\n\n\u003cbr /\u003e\n\n- **Description**:\n\nDukeUltrasound is an ultrasound dataset collected at Duke University with a\nVerasonics c52v probe. It contains delay-and-sum (DAS) beamformed data as well\nas data post-processed with Siemens Dynamic TCE for speckle reduction, contrast\nenhancement and improvement in conspicuity of anatomical structures. These data\nwere collected with support from the National Institute of Biomedical Imaging\nand Bioengineering under Grant R01-EB026574 and National Institutes of Health\nunder Grant 5T32GM007171-44. A usage example is available\n[here](https://colab.research.google.com/drive/1R_ARqpWoiHcUQWg1Fxwyx-ZkLi0IZ5qs).\n\n- **Homepage** :\n \u003chttps://github.com/ouwen/mimicknet\u003e\n\n- **Source code** :\n [`tfds.datasets.duke_ultrasound.Builder`](https://github.com/tensorflow/datasets/tree/master/tensorflow_datasets/datasets/duke_ultrasound/duke_ultrasound_dataset_builder.py)\n\n- **Versions**:\n\n - `1.0.0`: Initial release.\n - `1.0.1`: Fixes parsing of boolean field `harmonic`.\n - **`2.0.0`** (default): Fix timestamp_id from %Y%m%d%H%M%S to posix timestamp.\n- **Download size** : `12.78 GiB`\n\n- **Dataset size** : `13.79 GiB`\n\n- **Auto-cached**\n ([documentation](https://www.tensorflow.org/datasets/performances#auto-caching)):\n No\n\n- **Splits**:\n\n| Split | Examples |\n|----------------|----------|\n| `'A'` | 1,362 |\n| `'B'` | 1,194 |\n| `'MARK'` | 420 |\n| `'test'` | 438 |\n| `'train'` | 2,556 |\n| `'validation'` | 278 |\n\n- **Feature structure**:\n\n FeaturesDict({\n 'das': FeaturesDict({\n 'dB': Tensor(shape=(None,), dtype=float32),\n 'imag': Tensor(shape=(None,), dtype=float32),\n 'real': Tensor(shape=(None,), dtype=float32),\n }),\n 'dtce': Tensor(shape=(None,), dtype=float32),\n 'f0_hz': float32,\n 'final_angle': float32,\n 'final_radius': float32,\n 'focus_cm': float32,\n 'harmonic': bool,\n 'height': uint32,\n 'initial_angle': float32,\n 'initial_radius': float32,\n 'probe': string,\n 'scanner': string,\n 'target': string,\n 'timestamp_id': uint32,\n 'voltage': float32,\n 'width': uint32,\n })\n\n- **Feature documentation**:\n\n| Feature | Class | Shape | Dtype | Description |\n|----------------|--------------|---------|---------|-------------|\n| | FeaturesDict | | | |\n| das | FeaturesDict | | | |\n| das/dB | Tensor | (None,) | float32 | |\n| das/imag | Tensor | (None,) | float32 | |\n| das/real | Tensor | (None,) | float32 | |\n| dtce | Tensor | (None,) | float32 | |\n| f0_hz | Tensor | | float32 | |\n| final_angle | Tensor | | float32 | |\n| final_radius | Tensor | | float32 | |\n| focus_cm | Tensor | | float32 | |\n| harmonic | Tensor | | bool | |\n| height | Tensor | | uint32 | |\n| initial_angle | Tensor | | float32 | |\n| initial_radius | Tensor | | float32 | |\n| probe | Tensor | | string | |\n| scanner | Tensor | | string | |\n| target | Tensor | | string | |\n| timestamp_id | Tensor | | uint32 | |\n| voltage | Tensor | | float32 | |\n| width | Tensor | | uint32 | |\n\n- **Supervised keys** (See\n [`as_supervised` doc](https://www.tensorflow.org/datasets/api_docs/python/tfds/load#args)):\n `('das/dB', 'dtce')`\n\n- **Figure**\n ([tfds.show_examples](https://www.tensorflow.org/datasets/api_docs/python/tfds/visualization/show_examples)):\n Not supported.\n\n- **Examples**\n ([tfds.as_dataframe](https://www.tensorflow.org/datasets/api_docs/python/tfds/as_dataframe)):\n\nDisplay examples... \n\n- **Citation**:\n\n @article{DBLP:journals/corr/abs-1908-05782,\n author = {Ouwen Huang and\n Will Long and\n Nick Bottenus and\n Gregg E. Trahey and\n Sina Farsiu and\n Mark L. Palmeri},\n title = {MimickNet, Matching Clinical Post-Processing Under Realistic Black-Box\n Constraints},\n journal = {CoRR},\n volume = {abs/1908.05782},\n year = {2019},\n url = {http://arxiv.org/abs/1908.05782},\n archivePrefix = {arXiv},\n eprint = {1908.05782},\n timestamp = {Mon, 19 Aug 2019 13:21:03 +0200},\n biburl = {https://dblp.org/rec/bib/journals/corr/abs-1908-05782},\n bibsource = {dblp computer science bibliography, https://dblp.org}\n }"]]