cifar100
Stay organized with collections
Save and categorize content based on your preferences.
This dataset is just like the CIFAR-10, except it has 100 classes containing 600
images each. There are 500 training images and 100 testing images per class. The
100 classes in the CIFAR-100 are grouped into 20 superclasses. Each image comes
with a "fine" label (the class to which it belongs) and a "coarse" label (the
superclass to which it belongs).
Split |
Examples |
'test' |
10,000 |
'train' |
50,000 |
FeaturesDict({
'coarse_label': ClassLabel(shape=(), dtype=int64, num_classes=20),
'id': Text(shape=(), dtype=string),
'image': Image(shape=(32, 32, 3), dtype=uint8),
'label': ClassLabel(shape=(), dtype=int64, num_classes=100),
})
Feature |
Class |
Shape |
Dtype |
Description |
|
FeaturesDict |
|
|
|
coarse_label |
ClassLabel |
|
int64 |
|
id |
Text |
|
string |
|
image |
Image |
(32, 32, 3) |
uint8 |
|
label |
ClassLabel |
|
int64 |
|

@TECHREPORT{Krizhevsky09learningmultiple,
author = {Alex Krizhevsky},
title = {Learning multiple layers of features from tiny images},
institution = {},
year = {2009}
}
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates.
Last updated 2024-06-01 UTC.
[[["Easy to understand","easyToUnderstand","thumb-up"],["Solved my problem","solvedMyProblem","thumb-up"],["Other","otherUp","thumb-up"]],[["Missing the information I need","missingTheInformationINeed","thumb-down"],["Too complicated / too many steps","tooComplicatedTooManySteps","thumb-down"],["Out of date","outOfDate","thumb-down"],["Samples / code issue","samplesCodeIssue","thumb-down"],["Other","otherDown","thumb-down"]],["Last updated 2024-06-01 UTC."],[],[],null,["# cifar100\n\n\u003cbr /\u003e\n\n- **Description**:\n\nThis dataset is just like the CIFAR-10, except it has 100 classes containing 600\nimages each. There are 500 training images and 100 testing images per class. The\n100 classes in the CIFAR-100 are grouped into 20 superclasses. Each image comes\nwith a \"fine\" label (the class to which it belongs) and a \"coarse\" label (the\nsuperclass to which it belongs).\n\n- **Additional Documentation** :\n [Explore on Papers With Code\n north_east](https://paperswithcode.com/dataset/cifar-100)\n\n- **Homepage** :\n [https://www.cs.toronto.edu/\\~kriz/cifar.html](https://www.cs.toronto.edu/%7Ekriz/cifar.html)\n\n- **Source code** :\n [`tfds.image_classification.Cifar100`](https://github.com/tensorflow/datasets/tree/master/tensorflow_datasets/image_classification/cifar.py)\n\n- **Versions**:\n\n - **`3.0.2`** (default): No release notes.\n- **Download size** : `160.71 MiB`\n\n- **Dataset size** : `132.03 MiB`\n\n- **Auto-cached**\n ([documentation](https://www.tensorflow.org/datasets/performances#auto-caching)):\n Yes\n\n- **Splits**:\n\n| Split | Examples |\n|-----------|----------|\n| `'test'` | 10,000 |\n| `'train'` | 50,000 |\n\n- **Feature structure**:\n\n FeaturesDict({\n 'coarse_label': ClassLabel(shape=(), dtype=int64, num_classes=20),\n 'id': Text(shape=(), dtype=string),\n 'image': Image(shape=(32, 32, 3), dtype=uint8),\n 'label': ClassLabel(shape=(), dtype=int64, num_classes=100),\n })\n\n- **Feature documentation**:\n\n| Feature | Class | Shape | Dtype | Description |\n|--------------|--------------|-------------|--------|-------------|\n| | FeaturesDict | | | |\n| coarse_label | ClassLabel | | int64 | |\n| id | Text | | string | |\n| image | Image | (32, 32, 3) | uint8 | |\n| label | ClassLabel | | int64 | |\n\n- **Supervised keys** (See\n [`as_supervised` doc](https://www.tensorflow.org/datasets/api_docs/python/tfds/load#args)):\n `('image', 'label')`\n\n- **Figure**\n ([tfds.show_examples](https://www.tensorflow.org/datasets/api_docs/python/tfds/visualization/show_examples)):\n\n- **Examples** ([tfds.as_dataframe](https://www.tensorflow.org/datasets/api_docs/python/tfds/as_dataframe)):\n\nDisplay examples... \n\n- **Citation**:\n\n @TECHREPORT{Krizhevsky09learningmultiple,\n author = {Alex Krizhevsky},\n title = {Learning multiple layers of features from tiny images},\n institution = {},\n year = {2009}\n }"]]