simpte
Stay organized with collections
Save and categorize content based on your preferences.
Warning: Manual download required. See instructions below.
Full name: Simulations for Personalized Treatment Effects
Generated with the R's Uplift package:
https://rdrr.io/cran/uplift/man/sim_pte.html
The package could be downloaded here:
https://cran.r-project.org/src/contrib/Archive/uplift/
Dataset generated in R version 4.1.2 with following code:
library ( uplift )
set . seed ( 123 )
train <- sim_pte ( n = 1000 , p = 20 , rho = 0 , sigma = sqrt ( 2 ), beta . den = 4 )
test <- sim_pte ( n = 2000 , p = 20 , rho = 0 , sigma = sqrt ( 2 ), beta . den = 4 )
train $ treat <- ifelse ( train $ treat == 1 , 2 , 1 )
test $ treat <- ifelse ( test $ treat == 1 , 2 , 1 )
train $ y <- ifelse ( train $ y == 1 , 2 , 1 )
test $ y <- ifelse ( test $ y == 1 , 2 , 1 )
train $ ts = NULL
test $ ts = NULL
Parameters:
n
= number of samples
p
= number of predictors
ro
= covariance between predictors
sigma
= mutiplier of the error term
beta.den
= beta is mutiplied by 1/beta.den
Creator: Leo Guelman leo.guelman@gmail.com
Homepage :
https://rdrr.io/cran/uplift/man/sim_pte.html
Source code :
tfds.datasets.simpte.Builder
Versions :
1.0.0
(default): Initial release.
Download size : Unknown size
Dataset size : 1.04 MiB
Manual download instructions : This dataset requires you to
download the source data manually into download_config.manual_dir
(defaults to ~/tensorflow_datasets/downloads/manual/
):
Please download training data: sim_pte_train.csv and test data:
sim_pte_test.csv to ~/tensorflow_datasets/downloads/manual/.
Auto-cached
(documentation ):
Yes
Splits :
Split
Examples
'test'
2,000
'train'
1,000
FeaturesDict ({
'X1' : float32 ,
'X10' : float32 ,
'X11' : float32 ,
'X12' : float32 ,
'X13' : float32 ,
'X14' : float32 ,
'X15' : float32 ,
'X16' : float32 ,
'X17' : float32 ,
'X18' : float32 ,
'X19' : float32 ,
'X2' : float32 ,
'X20' : float32 ,
'X3' : float32 ,
'X4' : float32 ,
'X5' : float32 ,
'X6' : float32 ,
'X7' : float32 ,
'X8' : float32 ,
'X9' : float32 ,
'treat' : int32 ,
'y' : int32 ,
})
Feature
Class
Shape
Dtype
Description
FeaturesDict
X1
Tensor
float32
X10
Tensor
float32
X11
Tensor
float32
X12
Tensor
float32
X13
Tensor
float32
X14
Tensor
float32
X15
Tensor
float32
X16
Tensor
float32
X17
Tensor
float32
X18
Tensor
float32
X19
Tensor
float32
X2
Tensor
float32
X20
Tensor
float32
X3
Tensor
float32
X4
Tensor
float32
X5
Tensor
float32
X6
Tensor
float32
X7
Tensor
float32
X8
Tensor
float32
X9
Tensor
float32
treat
Tensor
int32
y
Tensor
int32
Supervised keys (See
as_supervised
doc ):
({'X1': 'X1', 'X10': 'X10', 'X11': 'X11', 'X12': 'X12', 'X13': 'X13',
'X14': 'X14', 'X15': 'X15', 'X16': 'X16', 'X17': 'X17', 'X18': 'X18', 'X19':
'X19', 'X2': 'X2', 'X20': 'X20', 'X3': 'X3', 'X4': 'X4', 'X5': 'X5', 'X6':
'X6', 'X7': 'X7', 'X8': 'X8', 'X9': 'X9', 'treat': 'treat'}, 'y')
Figure
(tfds.show_examples ):
Not supported.
Examples
(tfds.as_dataframe ):
@ misc { https : // doi . org / 10.48550 / arxiv . 1212.2995 ,
doi = { 10.48550 / ARXIV . 1212.2995 },
url = { https : // arxiv . org / abs / 1212.2995 },
author = { Tian , Lu and Alizadeh , Ash and Gentles , Andrew and Tibshirani , Robert },
keywords = { Methodology ( stat . ME ), FOS : Computer and information sciences , FOS : Computer and information sciences },
title = { A Simple Method for Detecting Interactions between a Treatment and a Large Number of Covariates },
publisher = { arXiv },
year = { 2012 },
copyright = { arXiv . org perpetual , non - exclusive license }
}
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License , and code samples are licensed under the Apache 2.0 License . For details, see the Google Developers Site Policies . Java is a registered trademark of Oracle and/or its affiliates.
Last updated 2022-12-23 UTC.
[[["Easy to understand","easyToUnderstand","thumb-up"],["Solved my problem","solvedMyProblem","thumb-up"],["Other","otherUp","thumb-up"]],[["Missing the information I need","missingTheInformationINeed","thumb-down"],["Too complicated / too many steps","tooComplicatedTooManySteps","thumb-down"],["Out of date","outOfDate","thumb-down"],["Samples / code issue","samplesCodeIssue","thumb-down"],["Other","otherDown","thumb-down"]],["Last updated 2022-12-23 UTC."],[],[],null,["# simpte\n\n| **Warning:** Manual download required. See instructions below.\n\n- **Description**:\n\nFull name: Simulations for Personalized Treatment Effects\n\nGenerated with the R's Uplift package:\n\u003chttps://rdrr.io/cran/uplift/man/sim_pte.html\u003e\n\nThe package could be downloaded here:\n\u003chttps://cran.r-project.org/src/contrib/Archive/uplift/\u003e\n\nDataset generated in R version 4.1.2 with following code: \n\n library(uplift)\n\n set.seed(123)\n\n train \u003c- sim_pte(n = 1000, p = 20, rho = 0, sigma = sqrt(2), beta.den = 4)\n test \u003c- sim_pte(n = 2000, p = 20, rho = 0, sigma = sqrt(2), beta.den = 4)\n\n train$treat \u003c- ifelse(train$treat == 1, 2, 1)\n test$treat \u003c- ifelse(test$treat == 1, 2, 1)\n\n train$y \u003c- ifelse(train$y == 1, 2, 1)\n test$y \u003c- ifelse(test$y == 1, 2, 1)\n\n train$ts = NULL\n test$ts = NULL\n\nParameters:\n\n- `n` = number of samples\n- `p` = number of predictors\n- `ro` = covariance between predictors\n- `sigma` = mutiplier of the error term\n- `beta.den` = beta is mutiplied by 1/beta.den\n\nCreator: Leo Guelman leo.guelman@gmail.com\n\n- **Homepage** :\n \u003chttps://rdrr.io/cran/uplift/man/sim_pte.html\u003e\n\n- **Source code** :\n [`tfds.datasets.simpte.Builder`](https://github.com/tensorflow/datasets/tree/master/tensorflow_datasets/datasets/simpte/simpte_dataset_builder.py)\n\n- **Versions**:\n\n - **`1.0.0`** (default): Initial release.\n- **Download size** : `Unknown size`\n\n- **Dataset size** : `1.04 MiB`\n\n- **Manual download instructions** : This dataset requires you to\n download the source data manually into `download_config.manual_dir`\n (defaults to `~/tensorflow_datasets/downloads/manual/`): \n\n Please download training data: sim_pte_train.csv and test data:\n sim_pte_test.csv to \\~/tensorflow_datasets/downloads/manual/.\n\n- **Auto-cached**\n ([documentation](https://www.tensorflow.org/datasets/performances#auto-caching)):\n Yes\n\n- **Splits**:\n\n| Split | Examples |\n|-----------|----------|\n| `'test'` | 2,000 |\n| `'train'` | 1,000 |\n\n- **Feature structure**:\n\n FeaturesDict({\n 'X1': float32,\n 'X10': float32,\n 'X11': float32,\n 'X12': float32,\n 'X13': float32,\n 'X14': float32,\n 'X15': float32,\n 'X16': float32,\n 'X17': float32,\n 'X18': float32,\n 'X19': float32,\n 'X2': float32,\n 'X20': float32,\n 'X3': float32,\n 'X4': float32,\n 'X5': float32,\n 'X6': float32,\n 'X7': float32,\n 'X8': float32,\n 'X9': float32,\n 'treat': int32,\n 'y': int32,\n })\n\n- **Feature documentation**:\n\n| Feature | Class | Shape | Dtype | Description |\n|---------|--------------|-------|---------|-------------|\n| | FeaturesDict | | | |\n| X1 | Tensor | | float32 | |\n| X10 | Tensor | | float32 | |\n| X11 | Tensor | | float32 | |\n| X12 | Tensor | | float32 | |\n| X13 | Tensor | | float32 | |\n| X14 | Tensor | | float32 | |\n| X15 | Tensor | | float32 | |\n| X16 | Tensor | | float32 | |\n| X17 | Tensor | | float32 | |\n| X18 | Tensor | | float32 | |\n| X19 | Tensor | | float32 | |\n| X2 | Tensor | | float32 | |\n| X20 | Tensor | | float32 | |\n| X3 | Tensor | | float32 | |\n| X4 | Tensor | | float32 | |\n| X5 | Tensor | | float32 | |\n| X6 | Tensor | | float32 | |\n| X7 | Tensor | | float32 | |\n| X8 | Tensor | | float32 | |\n| X9 | Tensor | | float32 | |\n| treat | Tensor | | int32 | |\n| y | Tensor | | int32 | |\n\n- **Supervised keys** (See\n [`as_supervised` doc](https://www.tensorflow.org/datasets/api_docs/python/tfds/load#args)):\n `({'X1': 'X1', 'X10': 'X10', 'X11': 'X11', 'X12': 'X12', 'X13': 'X13',\n 'X14': 'X14', 'X15': 'X15', 'X16': 'X16', 'X17': 'X17', 'X18': 'X18', 'X19':\n 'X19', 'X2': 'X2', 'X20': 'X20', 'X3': 'X3', 'X4': 'X4', 'X5': 'X5', 'X6':\n 'X6', 'X7': 'X7', 'X8': 'X8', 'X9': 'X9', 'treat': 'treat'}, 'y')`\n\n- **Figure**\n ([tfds.show_examples](https://www.tensorflow.org/datasets/api_docs/python/tfds/visualization/show_examples)):\n Not supported.\n\n- **Examples**\n ([tfds.as_dataframe](https://www.tensorflow.org/datasets/api_docs/python/tfds/as_dataframe)):\n\nDisplay examples... \n\n- **Citation**:\n\n @misc{https://doi.org/10.48550/arxiv.1212.2995,\n doi = {10.48550/ARXIV.1212.2995},\n url = {https://arxiv.org/abs/1212.2995},\n author = {Tian, Lu and Alizadeh, Ash and Gentles, Andrew and Tibshirani, Robert},\n keywords = {Methodology (stat.ME), FOS: Computer and information sciences, FOS: Computer and information sciences},\n title = {A Simple Method for Detecting Interactions between a Treatment and a Large Number of Covariates},\n publisher = {arXiv},\n year = {2012},\n copyright = {arXiv.org perpetual, non-exclusive license}\n }"]]