quac
Stay organized with collections
Save and categorize content based on your preferences.
Question Answering in Context is a dataset for modeling, understanding, and
participating in information seeking dialog. Data instances consist of an
interactive dialog between two crowd workers: (1) a student who poses a sequence
of freeform questions to learn as much as possible about a hidden Wikipedia
text, and (2) a teacher who answers the questions by providing short excerpts
(spans) from the text. QuAC introduces challenges not found in existing machine
comprehension datasets: its questions are often more open-ended, unanswerable,
or only meaningful within the dialog context.
Split |
Examples |
'train' |
83,568 |
'validation' |
7,354 |
FeaturesDict({
'answers': Sequence({
'answer_start': int32,
'text': Text(shape=(), dtype=string),
}),
'background': Text(shape=(), dtype=string),
'context': Text(shape=(), dtype=string),
'followup': Text(shape=(), dtype=string),
'orig_answer': FeaturesDict({
'answer_start': int32,
'text': Text(shape=(), dtype=string),
}),
'question': Text(shape=(), dtype=string),
'section_title': Text(shape=(), dtype=string),
'title': Text(shape=(), dtype=string),
'yesno': Text(shape=(), dtype=string),
})
Feature |
Class |
Shape |
Dtype |
Description |
|
FeaturesDict |
|
|
|
answers |
Sequence |
|
|
|
answers/answer_start |
Tensor |
|
int32 |
|
answers/text |
Text |
|
string |
|
background |
Text |
|
string |
|
context |
Text |
|
string |
|
followup |
Text |
|
string |
|
orig_answer |
FeaturesDict |
|
|
|
orig_answer/answer_start |
Tensor |
|
int32 |
|
orig_answer/text |
Text |
|
string |
|
question |
Text |
|
string |
|
section_title |
Text |
|
string |
|
title |
Text |
|
string |
|
yesno |
Text |
|
string |
|
@article{choi2018quac,
title={Quac: Question answering in context},
author={Choi, Eunsol and He, He and Iyyer, Mohit and Yatskar, Mark and Yih, Wen-tau and Choi, Yejin and Liang, Percy and Zettlemoyer, Luke},
journal={arXiv preprint arXiv:1808.07036},
year={2018}
}
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates.
Last updated 2022-12-20 UTC.
[[["Easy to understand","easyToUnderstand","thumb-up"],["Solved my problem","solvedMyProblem","thumb-up"],["Other","otherUp","thumb-up"]],[["Missing the information I need","missingTheInformationINeed","thumb-down"],["Too complicated / too many steps","tooComplicatedTooManySteps","thumb-down"],["Out of date","outOfDate","thumb-down"],["Samples / code issue","samplesCodeIssue","thumb-down"],["Other","otherDown","thumb-down"]],["Last updated 2022-12-20 UTC."],[],[],null,["# quac\n\n\u003cbr /\u003e\n\n- **Description**:\n\nQuestion Answering in Context is a dataset for modeling, understanding, and\nparticipating in information seeking dialog. Data instances consist of an\ninteractive dialog between two crowd workers: (1) a student who poses a sequence\nof freeform questions to learn as much as possible about a hidden Wikipedia\ntext, and (2) a teacher who answers the questions by providing short excerpts\n(spans) from the text. QuAC introduces challenges not found in existing machine\ncomprehension datasets: its questions are often more open-ended, unanswerable,\nor only meaningful within the dialog context.\n\n- **Additional Documentation** :\n [Explore on Papers With Code\n north_east](https://paperswithcode.com/dataset/quac)\n\n- **Homepage** : \u003chttps://quac.ai/\u003e\n\n- **Source code** :\n [`tfds.datasets.quac.Builder`](https://github.com/tensorflow/datasets/tree/master/tensorflow_datasets/datasets/quac/quac_dataset_builder.py)\n\n- **Versions**:\n\n - **`1.0.0`** (default): Initial release.\n- **Download size** : `73.47 MiB`\n\n- **Dataset size** : `298.04 MiB`\n\n- **Auto-cached**\n ([documentation](https://www.tensorflow.org/datasets/performances#auto-caching)):\n No\n\n- **Splits**:\n\n| Split | Examples |\n|----------------|----------|\n| `'train'` | 83,568 |\n| `'validation'` | 7,354 |\n\n- **Feature structure**:\n\n FeaturesDict({\n 'answers': Sequence({\n 'answer_start': int32,\n 'text': Text(shape=(), dtype=string),\n }),\n 'background': Text(shape=(), dtype=string),\n 'context': Text(shape=(), dtype=string),\n 'followup': Text(shape=(), dtype=string),\n 'orig_answer': FeaturesDict({\n 'answer_start': int32,\n 'text': Text(shape=(), dtype=string),\n }),\n 'question': Text(shape=(), dtype=string),\n 'section_title': Text(shape=(), dtype=string),\n 'title': Text(shape=(), dtype=string),\n 'yesno': Text(shape=(), dtype=string),\n })\n\n- **Feature documentation**:\n\n| Feature | Class | Shape | Dtype | Description |\n|--------------------------|--------------|-------|--------|-------------|\n| | FeaturesDict | | | |\n| answers | Sequence | | | |\n| answers/answer_start | Tensor | | int32 | |\n| answers/text | Text | | string | |\n| background | Text | | string | |\n| context | Text | | string | |\n| followup | Text | | string | |\n| orig_answer | FeaturesDict | | | |\n| orig_answer/answer_start | Tensor | | int32 | |\n| orig_answer/text | Text | | string | |\n| question | Text | | string | |\n| section_title | Text | | string | |\n| title | Text | | string | |\n| yesno | Text | | string | |\n\n- **Supervised keys** (See\n [`as_supervised` doc](https://www.tensorflow.org/datasets/api_docs/python/tfds/load#args)):\n `('context', 'answers')`\n\n- **Figure**\n ([tfds.show_examples](https://www.tensorflow.org/datasets/api_docs/python/tfds/visualization/show_examples)):\n Not supported.\n\n- **Examples**\n ([tfds.as_dataframe](https://www.tensorflow.org/datasets/api_docs/python/tfds/as_dataframe)):\n\nDisplay examples... \n\n- **Citation**:\n\n @article{choi2018quac,\n title={Quac: Question answering in context},\n author={Choi, Eunsol and He, He and Iyyer, Mohit and Yatskar, Mark and Yih, Wen-tau and Choi, Yejin and Liang, Percy and Zettlemoyer, Luke},\n journal={arXiv preprint arXiv:1808.07036},\n year={2018}\n }"]]