dementiabank
Stay organized with collections
Save and categorize content based on your preferences.
Warning: Manual download required. See instructions below.
DementiaBank is a medical domain task. It contains 117 people diagnosed with
Alzheimer Disease, and 93 healthy people, reading a description of an image, and
the task is to classify these groups. This release contains only the audio part
of this dataset, without the text features.
Additional Documentation :
Explore on Papers With Code
north_east
Homepage :
https://dementia.talkbank.org/
Source code :
tfds.audio.Dementiabank
Versions :
1.0.0
(default): No release notes.
Download size : Unknown size
Dataset size : 17.71 GiB
Manual download instructions : This dataset requires you to
download the source data manually into download_config.manual_dir
(defaults to ~/tensorflow_datasets/downloads/manual/
):
manual dir should contain 2 folders with mp3 files:
dementia/English/Pitt/Control/cookie
dementia/English/Pitt/Dementia/cookie
Which were downloaded from https://media.talkbank.org/dementia/English/Pitt/
This dataset requires registration for downloading.
Split
Examples
'test'
102
'train'
393
'validation'
57
FeaturesDict ({
'audio' : Audio ( shape = ( None ,), dtype = int64 ),
'label' : ClassLabel ( shape = (), dtype = int64 , num_classes = 2 ),
'speaker_id' : string ,
})
Feature
Class
Shape
Dtype
Description
FeaturesDict
audio
Audio
(None,)
int64
label
ClassLabel
int64
speaker_id
Tensor
string
@article { boller2005dementiabank ,
title = { Dementiabank database guide } ,
author = { Boller , Francois and Becker , James } ,
journal = { University of Pittsburgh } ,
year = { 2005 }
}
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License , and code samples are licensed under the Apache 2.0 License . For details, see the Google Developers Site Policies . Java is a registered trademark of Oracle and/or its affiliates.
Last updated 2022-12-06 UTC.
[[["Easy to understand","easyToUnderstand","thumb-up"],["Solved my problem","solvedMyProblem","thumb-up"],["Other","otherUp","thumb-up"]],[["Missing the information I need","missingTheInformationINeed","thumb-down"],["Too complicated / too many steps","tooComplicatedTooManySteps","thumb-down"],["Out of date","outOfDate","thumb-down"],["Samples / code issue","samplesCodeIssue","thumb-down"],["Other","otherDown","thumb-down"]],["Last updated 2022-12-06 UTC."],[],[],null,["# dementiabank\n\n\u003cbr /\u003e\n\n| **Warning:** Manual download required. See instructions below.\n\n- **Description**:\n\nDementiaBank is a medical domain task. It contains 117 people diagnosed with\nAlzheimer Disease, and 93 healthy people, reading a description of an image, and\nthe task is to classify these groups. This release contains only the audio part\nof this dataset, without the text features.\n\n- **Additional Documentation** :\n [Explore on Papers With Code\n north_east](https://paperswithcode.com/dataset/dementiabank)\n\n- **Homepage** :\n \u003chttps://dementia.talkbank.org/\u003e\n\n- **Source code** :\n [`tfds.audio.Dementiabank`](https://github.com/tensorflow/datasets/tree/master/tensorflow_datasets/audio/dementiabank.py)\n\n- **Versions**:\n\n - **`1.0.0`** (default): No release notes.\n- **Download size** : `Unknown size`\n\n- **Dataset size** : `17.71 GiB`\n\n- **Manual download instructions** : This dataset requires you to\n download the source data manually into `download_config.manual_dir`\n (defaults to `~/tensorflow_datasets/downloads/manual/`): \n\n manual dir should contain 2 folders with mp3 files:\n\n- dementia/English/Pitt/Control/cookie\n\n- dementia/English/Pitt/Dementia/cookie\n\nWhich were downloaded from \u003chttps://media.talkbank.org/dementia/English/Pitt/\u003e\nThis dataset requires registration for downloading.\n\n- **Auto-cached**\n ([documentation](https://www.tensorflow.org/datasets/performances#auto-caching)):\n No\n\n- **Splits**:\n\n| Split | Examples |\n|----------------|----------|\n| `'test'` | 102 |\n| `'train'` | 393 |\n| `'validation'` | 57 |\n\n- **Feature structure**:\n\n FeaturesDict({\n 'audio': Audio(shape=(None,), dtype=int64),\n 'label': ClassLabel(shape=(), dtype=int64, num_classes=2),\n 'speaker_id': string,\n })\n\n- **Feature documentation**:\n\n| Feature | Class | Shape | Dtype | Description |\n|------------|--------------|---------|--------|-------------|\n| | FeaturesDict | | | |\n| audio | Audio | (None,) | int64 | |\n| label | ClassLabel | | int64 | |\n| speaker_id | Tensor | | string | |\n\n- **Supervised keys** (See\n [`as_supervised` doc](https://www.tensorflow.org/datasets/api_docs/python/tfds/load#args)):\n `('audio', 'label')`\n\n- **Figure**\n ([tfds.show_examples](https://www.tensorflow.org/datasets/api_docs/python/tfds/visualization/show_examples)):\n Not supported.\n\n- **Examples**\n ([tfds.as_dataframe](https://www.tensorflow.org/datasets/api_docs/python/tfds/as_dataframe)):\n\nDisplay examples... \n\n- **Citation**:\n\n @article{boller2005dementiabank,\n title={Dementiabank database guide},\n author={Boller, Francois and Becker, James},\n journal={University of Pittsburgh},\n year={2005}\n }"]]