cmu_franka_exploration_dataset_converted_externally_to_rlds
Stay organized with collections
Save and categorize content based on your preferences.
Franka exploring toy kitchens
Split |
Examples |
'train' |
199 |
FeaturesDict({
'episode_metadata': FeaturesDict({
'file_path': Text(shape=(), dtype=string),
}),
'steps': Dataset({
'action': Tensor(shape=(8,), dtype=float32, description=Robot action, consists of [end effector position3x, end effector orientation3x, gripper action1x, episode termination1x].),
'discount': Scalar(shape=(), dtype=float32, description=Discount if provided, default to 1.),
'is_first': bool,
'is_last': bool,
'is_terminal': bool,
'language_embedding': Tensor(shape=(512,), dtype=float32, description=Kona language embedding. See https://tfhub.dev/google/universal-sentence-encoder-large/5),
'language_instruction': Text(shape=(), dtype=string),
'observation': FeaturesDict({
'highres_image': Image(shape=(480, 640, 3), dtype=uint8, description=High resolution main camera observation),
'image': Image(shape=(64, 64, 3), dtype=uint8, description=Main camera RGB observation.),
}),
'reward': Scalar(shape=(), dtype=float32, description=Reward if provided, 1 on final step for demos.),
'structured_action': Tensor(shape=(8,), dtype=float32, description=Structured action, consisting of hybrid affordance and end-effector control, described in Structured World Models from Human Videos.),
}),
})
Feature |
Class |
Shape |
Dtype |
Description |
|
FeaturesDict |
|
|
|
episode_metadata |
FeaturesDict |
|
|
|
episode_metadata/file_path |
Text |
|
string |
Path to the original data file. |
steps |
Dataset |
|
|
|
steps/action |
Tensor |
(8,) |
float32 |
Robot action, consists of [end effector position3x, end effector orientation3x, gripper action1x, episode termination1x]. |
steps/discount |
Scalar |
|
float32 |
Discount if provided, default to 1. |
steps/is_first |
Tensor |
|
bool |
|
steps/is_last |
Tensor |
|
bool |
|
steps/is_terminal |
Tensor |
|
bool |
|
steps/language_embedding |
Tensor |
(512,) |
float32 |
Kona language embedding. See https://tfhub.dev/google/universal-sentence-encoder-large/5 |
steps/language_instruction |
Text |
|
string |
Language Instruction. |
steps/observation |
FeaturesDict |
|
|
|
steps/observation/highres_image |
Image |
(480, 640, 3) |
uint8 |
High resolution main camera observation |
steps/observation/image |
Image |
(64, 64, 3) |
uint8 |
Main camera RGB observation. |
steps/reward |
Scalar |
|
float32 |
Reward if provided, 1 on final step for demos. |
steps/structured_action |
Tensor |
(8,) |
float32 |
Structured action, consisting of hybrid affordance and end-effector control, described in Structured World Models from Human Videos. |
@inproceedings{mendonca2023structured,
title={Structured World Models from Human Videos},
author={Mendonca, Russell and Bahl, Shikhar and Pathak, Deepak},
journal={RSS},
year={2023}
}
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates.
Last updated 2024-09-03 UTC.
[[["Easy to understand","easyToUnderstand","thumb-up"],["Solved my problem","solvedMyProblem","thumb-up"],["Other","otherUp","thumb-up"]],[["Missing the information I need","missingTheInformationINeed","thumb-down"],["Too complicated / too many steps","tooComplicatedTooManySteps","thumb-down"],["Out of date","outOfDate","thumb-down"],["Samples / code issue","samplesCodeIssue","thumb-down"],["Other","otherDown","thumb-down"]],["Last updated 2024-09-03 UTC."],[],[],null,["# cmu_franka_exploration_dataset_converted_externally_to_rlds\n\n\u003cbr /\u003e\n\n- **Description**:\n\nFranka exploring toy kitchens\n\n- **Homepage** :\n \u003chttps://human-world-model.github.io/\u003e\n\n- **Source code** :\n [`tfds.robotics.rtx.CmuFrankaExplorationDatasetConvertedExternallyToRlds`](https://github.com/tensorflow/datasets/tree/master/tensorflow_datasets/robotics/rtx/rtx.py)\n\n- **Versions**:\n\n - **`0.1.0`** (default): Initial release.\n- **Download size** : `Unknown size`\n\n- **Dataset size** : `602.24 MiB`\n\n- **Auto-cached**\n ([documentation](https://www.tensorflow.org/datasets/performances#auto-caching)):\n No\n\n- **Splits**:\n\n| Split | Examples |\n|-----------|----------|\n| `'train'` | 199 |\n\n- **Feature structure**:\n\n FeaturesDict({\n 'episode_metadata': FeaturesDict({\n 'file_path': Text(shape=(), dtype=string),\n }),\n 'steps': Dataset({\n 'action': Tensor(shape=(8,), dtype=float32, description=Robot action, consists of [end effector position3x, end effector orientation3x, gripper action1x, episode termination1x].),\n 'discount': Scalar(shape=(), dtype=float32, description=Discount if provided, default to 1.),\n 'is_first': bool,\n 'is_last': bool,\n 'is_terminal': bool,\n 'language_embedding': Tensor(shape=(512,), dtype=float32, description=Kona language embedding. See https://tfhub.dev/google/universal-sentence-encoder-large/5),\n 'language_instruction': Text(shape=(), dtype=string),\n 'observation': FeaturesDict({\n 'highres_image': Image(shape=(480, 640, 3), dtype=uint8, description=High resolution main camera observation),\n 'image': Image(shape=(64, 64, 3), dtype=uint8, description=Main camera RGB observation.),\n }),\n 'reward': Scalar(shape=(), dtype=float32, description=Reward if provided, 1 on final step for demos.),\n 'structured_action': Tensor(shape=(8,), dtype=float32, description=Structured action, consisting of hybrid affordance and end-effector control, described in Structured World Models from Human Videos.),\n }),\n })\n\n- **Feature documentation**:\n\n| Feature | Class | Shape | Dtype | Description |\n|---------------------------------|--------------|---------------|---------|--------------------------------------------------------------------------------------------------------------------------------------|\n| | FeaturesDict | | | |\n| episode_metadata | FeaturesDict | | | |\n| episode_metadata/file_path | Text | | string | Path to the original data file. |\n| steps | Dataset | | | |\n| steps/action | Tensor | (8,) | float32 | Robot action, consists of \\[end effector position3x, end effector orientation3x, gripper action1x, episode termination1x\\]. |\n| steps/discount | Scalar | | float32 | Discount if provided, default to 1. |\n| steps/is_first | Tensor | | bool | |\n| steps/is_last | Tensor | | bool | |\n| steps/is_terminal | Tensor | | bool | |\n| steps/language_embedding | Tensor | (512,) | float32 | Kona language embedding. See \u003chttps://tfhub.dev/google/universal-sentence-encoder-large/5\u003e |\n| steps/language_instruction | Text | | string | Language Instruction. |\n| steps/observation | FeaturesDict | | | |\n| steps/observation/highres_image | Image | (480, 640, 3) | uint8 | High resolution main camera observation |\n| steps/observation/image | Image | (64, 64, 3) | uint8 | Main camera RGB observation. |\n| steps/reward | Scalar | | float32 | Reward if provided, 1 on final step for demos. |\n| steps/structured_action | Tensor | (8,) | float32 | Structured action, consisting of hybrid affordance and end-effector control, described in Structured World Models from Human Videos. |\n\n- **Supervised keys** (See\n [`as_supervised` doc](https://www.tensorflow.org/datasets/api_docs/python/tfds/load#args)):\n `None`\n\n- **Figure**\n ([tfds.show_examples](https://www.tensorflow.org/datasets/api_docs/python/tfds/visualization/show_examples)):\n Not supported.\n\n- **Examples**\n ([tfds.as_dataframe](https://www.tensorflow.org/datasets/api_docs/python/tfds/as_dataframe)):\n\nDisplay examples... \n\n- **Citation**:\n\n @inproceedings{mendonca2023structured,\n title={Structured World Models from Human Videos},\n author={Mendonca, Russell and Bahl, Shikhar and Pathak, Deepak},\n journal={RSS},\n year={2023}\n }"]]