bridge_data_msr
Stay organized with collections
Save and categorize content based on your preferences.
A set of object manipulation trajectories collected at Microsoft Research on a
WidowX-250 robot in a setup and format compatible with UC Berkeley's BridgeData
V2 (https://rail-berkeley.github.io/bridgedata/)
Split |
Examples |
'train' |
822 |
FeaturesDict({
'episode_metadata': FeaturesDict({
'file_path': string,
'has_depth_0': Scalar(shape=(), dtype=bool),
'has_image_0': Scalar(shape=(), dtype=bool),
'has_image_1': Scalar(shape=(), dtype=bool),
'has_image_2': Scalar(shape=(), dtype=bool),
'has_language': Scalar(shape=(), dtype=bool),
}),
'steps': Dataset({
'action': Tensor(shape=(7,), dtype=float32),
'discount': Scalar(shape=(), dtype=float32),
'is_first': bool,
'is_last': bool,
'is_terminal': bool,
'language_embedding': Tensor(shape=(512,), dtype=float32),
'language_instruction': string,
'observation': FeaturesDict({
'depth_0': Image(shape=(480, 640, 1), dtype=uint8),
'image_0': Image(shape=(480, 640, 3), dtype=uint8),
'image_1': Image(shape=(480, 640, 3), dtype=uint8),
'image_2': Image(shape=(480, 640, 3), dtype=uint8),
'state': Tensor(shape=(7,), dtype=float32),
}),
'reward': Scalar(shape=(), dtype=float32),
}),
})
Feature |
Class |
Shape |
Dtype |
Description |
|
FeaturesDict |
|
|
|
episode_metadata |
FeaturesDict |
|
|
|
episode_metadata/file_path |
Tensor |
|
string |
|
episode_metadata/has_depth_0 |
Scalar |
|
bool |
|
episode_metadata/has_image_0 |
Scalar |
|
bool |
|
episode_metadata/has_image_1 |
Scalar |
|
bool |
|
episode_metadata/has_image_2 |
Scalar |
|
bool |
|
episode_metadata/has_language |
Scalar |
|
bool |
|
steps |
Dataset |
|
|
|
steps/action |
Tensor |
(7,) |
float32 |
|
steps/discount |
Scalar |
|
float32 |
|
steps/is_first |
Tensor |
|
bool |
|
steps/is_last |
Tensor |
|
bool |
|
steps/is_terminal |
Tensor |
|
bool |
|
steps/language_embedding |
Tensor |
(512,) |
float32 |
|
steps/language_instruction |
Tensor |
|
string |
|
steps/observation |
FeaturesDict |
|
|
|
steps/observation/depth_0 |
Image |
(480, 640, 1) |
uint8 |
|
steps/observation/image_0 |
Image |
(480, 640, 3) |
uint8 |
|
steps/observation/image_1 |
Image |
(480, 640, 3) |
uint8 |
|
steps/observation/image_2 |
Image |
(480, 640, 3) |
uint8 |
|
steps/observation/state |
Tensor |
(7,) |
float32 |
|
steps/reward |
Scalar |
|
float32 |
|
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates.
Last updated 2024-05-31 UTC.
[[["Easy to understand","easyToUnderstand","thumb-up"],["Solved my problem","solvedMyProblem","thumb-up"],["Other","otherUp","thumb-up"]],[["Missing the information I need","missingTheInformationINeed","thumb-down"],["Too complicated / too many steps","tooComplicatedTooManySteps","thumb-down"],["Out of date","outOfDate","thumb-down"],["Samples / code issue","samplesCodeIssue","thumb-down"],["Other","otherDown","thumb-down"]],["Last updated 2024-05-31 UTC."],[],[],null,["# bridge_data_msr\n\n\u003cbr /\u003e\n\n- **Description**:\n\nA set of object manipulation trajectories collected at Microsoft Research on a\nWidowX-250 robot in a setup and format compatible with UC Berkeley's BridgeData\nV2 (\u003chttps://rail-berkeley.github.io/bridgedata/\u003e)\n\n- **Homepage** :\n \u003chttps://www.microsoft.com/en-us/download/details.aspx?id=105937\u003e\n\n- **Source code** :\n [`tfds.robotics.rtx.BridgeDataMsr`](https://github.com/tensorflow/datasets/tree/master/tensorflow_datasets/robotics/rtx/rtx.py)\n\n- **Versions**:\n\n - **`0.1.0`** (default): Initial release.\n- **Download size** : `Unknown size`\n\n- **Dataset size** : `21.54 GiB`\n\n- **Auto-cached**\n ([documentation](https://www.tensorflow.org/datasets/performances#auto-caching)):\n No\n\n- **Splits**:\n\n| Split | Examples |\n|-----------|----------|\n| `'train'` | 822 |\n\n- **Feature structure**:\n\n FeaturesDict({\n 'episode_metadata': FeaturesDict({\n 'file_path': string,\n 'has_depth_0': Scalar(shape=(), dtype=bool),\n 'has_image_0': Scalar(shape=(), dtype=bool),\n 'has_image_1': Scalar(shape=(), dtype=bool),\n 'has_image_2': Scalar(shape=(), dtype=bool),\n 'has_language': Scalar(shape=(), dtype=bool),\n }),\n 'steps': Dataset({\n 'action': Tensor(shape=(7,), dtype=float32),\n 'discount': Scalar(shape=(), dtype=float32),\n 'is_first': bool,\n 'is_last': bool,\n 'is_terminal': bool,\n 'language_embedding': Tensor(shape=(512,), dtype=float32),\n 'language_instruction': string,\n 'observation': FeaturesDict({\n 'depth_0': Image(shape=(480, 640, 1), dtype=uint8),\n 'image_0': Image(shape=(480, 640, 3), dtype=uint8),\n 'image_1': Image(shape=(480, 640, 3), dtype=uint8),\n 'image_2': Image(shape=(480, 640, 3), dtype=uint8),\n 'state': Tensor(shape=(7,), dtype=float32),\n }),\n 'reward': Scalar(shape=(), dtype=float32),\n }),\n })\n\n- **Feature documentation**:\n\n| Feature | Class | Shape | Dtype | Description |\n|-------------------------------|--------------|---------------|---------|-------------|\n| | FeaturesDict | | | |\n| episode_metadata | FeaturesDict | | | |\n| episode_metadata/file_path | Tensor | | string | |\n| episode_metadata/has_depth_0 | Scalar | | bool | |\n| episode_metadata/has_image_0 | Scalar | | bool | |\n| episode_metadata/has_image_1 | Scalar | | bool | |\n| episode_metadata/has_image_2 | Scalar | | bool | |\n| episode_metadata/has_language | Scalar | | bool | |\n| steps | Dataset | | | |\n| steps/action | Tensor | (7,) | float32 | |\n| steps/discount | Scalar | | float32 | |\n| steps/is_first | Tensor | | bool | |\n| steps/is_last | Tensor | | bool | |\n| steps/is_terminal | Tensor | | bool | |\n| steps/language_embedding | Tensor | (512,) | float32 | |\n| steps/language_instruction | Tensor | | string | |\n| steps/observation | FeaturesDict | | | |\n| steps/observation/depth_0 | Image | (480, 640, 1) | uint8 | |\n| steps/observation/image_0 | Image | (480, 640, 3) | uint8 | |\n| steps/observation/image_1 | Image | (480, 640, 3) | uint8 | |\n| steps/observation/image_2 | Image | (480, 640, 3) | uint8 | |\n| steps/observation/state | Tensor | (7,) | float32 | |\n| steps/reward | Scalar | | float32 | |\n\n- **Supervised keys** (See\n [`as_supervised` doc](https://www.tensorflow.org/datasets/api_docs/python/tfds/load#args)):\n `None`\n\n- **Figure**\n ([tfds.show_examples](https://www.tensorflow.org/datasets/api_docs/python/tfds/visualization/show_examples)):\n Not supported.\n\n- **Examples**\n ([tfds.as_dataframe](https://www.tensorflow.org/datasets/api_docs/python/tfds/as_dataframe)):\n\nDisplay examples... \n\n- **Citation**:"]]