squad_question_generation
Stay organized with collections
Save and categorize content based on your preferences.
Question generation using squad dataset using data splits described in 'Neural
Question Generation from Text: A Preliminary Study' (Zhou et al, 2017) and
'Learning to Ask: Neural Question Generation for Reading Comprehension' (Du et
al, 2017).
Homepage: https://github.com/xinyadu/nqg
@inproceedings{du-etal-2017-learning, title = "Learning to Ask: Neural
Question Generation for Reading Comprehension", author = "Du, Xinya and
Shao, Junru and Cardie, Claire", booktitle = "Proceedings of the 55th Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers)", month = jul, year = "2017", address = "Vancouver, Canada",
publisher = "Association for Computational Linguistics", url =
"https://aclanthology.org/P17-1123", doi = "10.18653/v1/P17-1123", pages =
"1342--1352",
}",
month = jul, year = "2017", address = "Vancouver, Canada", publisher =
"Association for Computational Linguistics", url =
"https://aclanthology.org/P17-1123", doi = "10.18653/v1/P17-1123", pages =
"1342--1352", } )
Source code:
tfds.text.squad_question_generation.SquadQuestionGeneration
Versions:
1.0.0
: Initial build with unique SQuAD QAS ids in each split, using
passage-level context (Zhou et al, 2017).
2.0.0
: Matches the original split of (Zhou et al, 2017), allows both
sentence- and passage-level contexts, and uses answers from (Zhou et al,
2017).
3.0.0
(default): Added the split of (Du et al, 2017) also.
Auto-cached
(documentation):
Yes
Supervised keys (See
as_supervised
doc):
('context_passage', 'question')
Figure
(tfds.show_examples):
Not supported.
Citation:
@inproceedings{du-etal-2017-learning,
title = "Learning to Ask: Neural Question Generation for Reading Comprehension",
author = "Du, Xinya and Shao, Junru and Cardie, Claire",
booktitle = "Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",
month = jul,
year = "2017",
address = "Vancouver, Canada",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/P17-1123",
doi = "10.18653/v1/P17-1123",
pages = "1342--1352",
}
@inproceedings{rajpurkar-etal-2016-squad,
title = "{SQ}u{AD}: 100,000+ Questions for Machine Comprehension of Text",
author = "Rajpurkar, Pranav and Zhang, Jian and Lopyrev, Konstantin and Liang, Percy",
booktitle = "Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing",
month = nov,
year = "2016",
address = "Austin, Texas",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/D16-1264",
doi = "10.18653/v1/D16-1264",
pages = "2383--2392",
}
squad_question_generation/split_du (default config)
Split |
Examples |
'test' |
11,877 |
'train' |
75,722 |
'validation' |
10,570 |
FeaturesDict({
'answer': Text(shape=(), dtype=string),
'context_passage': Text(shape=(), dtype=string),
'question': Text(shape=(), dtype=string),
})
Feature |
Class |
Shape |
Dtype |
Description |
|
FeaturesDict |
|
|
|
answer |
Text |
|
string |
|
context_passage |
Text |
|
string |
|
question |
Text |
|
string |
|
squad_question_generation/split_zhou
Split |
Examples |
'test' |
8,964 |
'train' |
86,635 |
'validation' |
8,965 |
FeaturesDict({
'answer': Text(shape=(), dtype=string),
'context_passage': Text(shape=(), dtype=string),
'context_sentence': Text(shape=(), dtype=string),
'question': Text(shape=(), dtype=string),
})
Feature |
Class |
Shape |
Dtype |
Description |
|
FeaturesDict |
|
|
|
answer |
Text |
|
string |
|
context_passage |
Text |
|
string |
|
context_sentence |
Text |
|
string |
|
question |
Text |
|
string |
|
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates.
Last updated 2022-12-06 UTC.
[[["Easy to understand","easyToUnderstand","thumb-up"],["Solved my problem","solvedMyProblem","thumb-up"],["Other","otherUp","thumb-up"]],[["Missing the information I need","missingTheInformationINeed","thumb-down"],["Too complicated / too many steps","tooComplicatedTooManySteps","thumb-down"],["Out of date","outOfDate","thumb-down"],["Samples / code issue","samplesCodeIssue","thumb-down"],["Other","otherDown","thumb-down"]],["Last updated 2022-12-06 UTC."],[],[],null,["# squad_question_generation\n\n- **Description**:\n\nQuestion generation using squad dataset using data splits described in 'Neural\nQuestion Generation from Text: A Preliminary Study' (Zhou et al, 2017) and\n'Learning to Ask: Neural Question Generation for Reading Comprehension' (Du et\nal, 2017).\n\n- **Homepage** : [https://github.com/xinyadu/nqg\n @inproceedings{du-etal-2017-learning, title = \"Learning to Ask: Neural\n Question Generation for Reading Comprehension\", author = \"Du, Xinya and\n Shao, Junru and Cardie, Claire\", booktitle = \"Proceedings of the 55th Annual\n Meeting of the Association for Computational Linguistics (Volume 1: Long\n Papers)\", month = jul, year = \"2017\", address = \"Vancouver, Canada\",\n publisher = \"Association for Computational Linguistics\", url =\n \"https://aclanthology.org/P17-1123\", doi = \"10.18653/v1/P17-1123\", pages =\n \"1342--1352\",\n }](https://github.com/xinyadu/nqg%20@inproceedings%7Bdu-etal-2017-learning,%20title%20=%20%22Learning%20to%20Ask:%20Neural%20Question%20Generation%20for%20Reading%20Comprehension%22,%20author%20=%20%22Du,%20Xinya%20and%20Shao,%20Junru%20and%20Cardie,%20Claire%22,%20booktitle%20=%20%22Proceedings%20of%20the%2055th%20Annual%20Meeting%20of%20the%20Association%20for%20Computational%20Linguistics%20(Volume%201:%20Long%20Papers)\",\n month = jul, year = \"2017\", address = \"Vancouver, Canada\", publisher =\n \"Association for Computational Linguistics\", url =\n \"https://aclanthology.org/P17-1123\", doi = \"10.18653/v1/P17-1123\", pages =\n \"1342--1352\", } )\n\n- **Source code** :\n [`tfds.text.squad_question_generation.SquadQuestionGeneration`](https://github.com/tensorflow/datasets/tree/master/tensorflow_datasets/text/squad_question_generation/squad_question_generation.py)\n\n- **Versions**:\n\n - `1.0.0`: Initial build with unique SQuAD QAS ids in each split, using\n passage-level context (Zhou et al, 2017).\n\n - `2.0.0`: Matches the original split of (Zhou et al, 2017), allows both\n sentence- and passage-level contexts, and uses answers from (Zhou et al,\n 2017).\n\n - **`3.0.0`** (default): Added the split of (Du et al, 2017) also.\n\n- **Auto-cached**\n ([documentation](https://www.tensorflow.org/datasets/performances#auto-caching)):\n Yes\n\n- **Supervised keys** (See\n [`as_supervised` doc](https://www.tensorflow.org/datasets/api_docs/python/tfds/load#args)):\n `('context_passage', 'question')`\n\n- **Figure**\n ([tfds.show_examples](https://www.tensorflow.org/datasets/api_docs/python/tfds/visualization/show_examples)):\n Not supported.\n\n- **Citation**:\n\n @inproceedings{du-etal-2017-learning,\n title = \"Learning to Ask: Neural Question Generation for Reading Comprehension\",\n author = \"Du, Xinya and Shao, Junru and Cardie, Claire\",\n booktitle = \"Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)\",\n month = jul,\n year = \"2017\",\n address = \"Vancouver, Canada\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://aclanthology.org/P17-1123\",\n doi = \"10.18653/v1/P17-1123\",\n pages = \"1342--1352\",\n }\n\n @inproceedings{rajpurkar-etal-2016-squad,\n title = \"{SQ}u{AD}: 100,000+ Questions for Machine Comprehension of Text\",\n author = \"Rajpurkar, Pranav and Zhang, Jian and Lopyrev, Konstantin and Liang, Percy\",\n booktitle = \"Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing\",\n month = nov,\n year = \"2016\",\n address = \"Austin, Texas\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://aclanthology.org/D16-1264\",\n doi = \"10.18653/v1/D16-1264\",\n pages = \"2383--2392\",\n }\n\nsquad_question_generation/split_du (default config)\n---------------------------------------------------\n\n- **Config description**: Answer independent question generation from\n passage-level contexts (Du et al, 2017).\n\n- **Download size** : `62.83 MiB`\n\n- **Dataset size** : `84.67 MiB`\n\n- **Splits**:\n\n| Split | Examples |\n|----------------|----------|\n| `'test'` | 11,877 |\n| `'train'` | 75,722 |\n| `'validation'` | 10,570 |\n\n- **Feature structure**:\n\n FeaturesDict({\n 'answer': Text(shape=(), dtype=string),\n 'context_passage': Text(shape=(), dtype=string),\n 'question': Text(shape=(), dtype=string),\n })\n\n- **Feature documentation**:\n\n| Feature | Class | Shape | Dtype | Description |\n|-----------------|--------------|-------|--------|-------------|\n| | FeaturesDict | | | |\n| answer | Text | | string | |\n| context_passage | Text | | string | |\n| question | Text | | string | |\n\n- **Examples** ([tfds.as_dataframe](https://www.tensorflow.org/datasets/api_docs/python/tfds/as_dataframe)):\n\nDisplay examples... \n\nsquad_question_generation/split_zhou\n------------------------------------\n\n- **Config description**: Answer-span dependent question generation from\n sentence- and passage-level contexts (Zhou et al, 2017).\n\n- **Download size** : `62.52 MiB`\n\n- **Dataset size** : `111.02 MiB`\n\n- **Splits**:\n\n| Split | Examples |\n|----------------|----------|\n| `'test'` | 8,964 |\n| `'train'` | 86,635 |\n| `'validation'` | 8,965 |\n\n- **Feature structure**:\n\n FeaturesDict({\n 'answer': Text(shape=(), dtype=string),\n 'context_passage': Text(shape=(), dtype=string),\n 'context_sentence': Text(shape=(), dtype=string),\n 'question': Text(shape=(), dtype=string),\n })\n\n- **Feature documentation**:\n\n| Feature | Class | Shape | Dtype | Description |\n|------------------|--------------|-------|--------|-------------|\n| | FeaturesDict | | | |\n| answer | Text | | string | |\n| context_passage | Text | | string | |\n| context_sentence | Text | | string | |\n| question | Text | | string | |\n\n- **Examples** ([tfds.as_dataframe](https://www.tensorflow.org/datasets/api_docs/python/tfds/as_dataframe)):\n\nDisplay examples..."]]