downsampled_imagenet
Stay organized with collections
Save and categorize content based on your preferences.
Dataset with images of 2 resolutions (see config name for information on the
resolution). It is used for density estimation and generative modeling
experiments.
For resized ImageNet for supervised learning
(link) see imagenet_resized
.
Split |
Examples |
'train' |
1,281,149 |
'validation' |
49,999 |
FeaturesDict({
'image': Image(shape=(None, None, 3), dtype=uint8),
})
Feature |
Class |
Shape |
Dtype |
Description |
|
FeaturesDict |
|
|
|
image |
Image |
(None, None, 3) |
uint8 |
|
@article{DBLP:journals/corr/OordKK16,
author = {A{"{a} }ron van den Oord and
Nal Kalchbrenner and
Koray Kavukcuoglu},
title = {Pixel Recurrent Neural Networks},
journal = {CoRR},
volume = {abs/1601.06759},
year = {2016},
url = {http://arxiv.org/abs/1601.06759},
archivePrefix = {arXiv},
eprint = {1601.06759},
timestamp = {Mon, 13 Aug 2018 16:46:29 +0200},
biburl = {https://dblp.org/rec/bib/journals/corr/OordKK16},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
downsampled_imagenet/32x32 (default config)

downsampled_imagenet/64x64

Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates.
Last updated 2024-06-01 UTC.
[[["Easy to understand","easyToUnderstand","thumb-up"],["Solved my problem","solvedMyProblem","thumb-up"],["Other","otherUp","thumb-up"]],[["Missing the information I need","missingTheInformationINeed","thumb-down"],["Too complicated / too many steps","tooComplicatedTooManySteps","thumb-down"],["Out of date","outOfDate","thumb-down"],["Samples / code issue","samplesCodeIssue","thumb-down"],["Other","otherDown","thumb-down"]],["Last updated 2024-06-01 UTC."],[],[],null,["# downsampled_imagenet\n\n\u003cbr /\u003e\n\n- **Description**:\n\nDataset with images of 2 resolutions (see config name for information on the\nresolution). It is used for density estimation and generative modeling\nexperiments.\n\nFor resized ImageNet for supervised learning\n([link](https://patrykchrabaszcz.github.io/Imagenet32/)) see `imagenet_resized`.\n\n- **Homepage** :\n \u003chttp://image-net.org/small/download.php\u003e\n\n- **Source code** :\n [`tfds.datasets.downsampled_imagenet.Builder`](https://github.com/tensorflow/datasets/tree/master/tensorflow_datasets/datasets/downsampled_imagenet/downsampled_imagenet_dataset_builder.py)\n\n- **Versions**:\n\n - **`2.0.0`** (default): New split API (\u003chttps://tensorflow.org/datasets/splits\u003e)\n- **Auto-cached**\n ([documentation](https://www.tensorflow.org/datasets/performances#auto-caching)):\n No\n\n- **Splits**:\n\n| Split | Examples |\n|----------------|-----------|\n| `'train'` | 1,281,149 |\n| `'validation'` | 49,999 |\n\n- **Feature structure**:\n\n FeaturesDict({\n 'image': Image(shape=(None, None, 3), dtype=uint8),\n })\n\n- **Feature documentation**:\n\n| Feature | Class | Shape | Dtype | Description |\n|---------|--------------|-----------------|-------|-------------|\n| | FeaturesDict | | | |\n| image | Image | (None, None, 3) | uint8 | |\n\n- **Supervised keys** (See\n [`as_supervised` doc](https://www.tensorflow.org/datasets/api_docs/python/tfds/load#args)):\n `None`\n\n- **Citation**:\n\n @article{DBLP:journals/corr/OordKK16,\n author = {A{\"{a} }ron van den Oord and\n Nal Kalchbrenner and\n Koray Kavukcuoglu},\n title = {Pixel Recurrent Neural Networks},\n journal = {CoRR},\n volume = {abs/1601.06759},\n year = {2016},\n url = {http://arxiv.org/abs/1601.06759},\n archivePrefix = {arXiv},\n eprint = {1601.06759},\n timestamp = {Mon, 13 Aug 2018 16:46:29 +0200},\n biburl = {https://dblp.org/rec/bib/journals/corr/OordKK16},\n bibsource = {dblp computer science bibliography, https://dblp.org}\n }\n\ndownsampled_imagenet/32x32 (default config)\n-------------------------------------------\n\n- **Config description**: A dataset consisting of Train and Validation images\n of 32x32 resolution.\n\n- **Download size** : `3.98 GiB`\n\n- **Dataset size** : `3.05 GiB`\n\n- **Figure**\n ([tfds.show_examples](https://www.tensorflow.org/datasets/api_docs/python/tfds/visualization/show_examples)):\n\n- **Examples** ([tfds.as_dataframe](https://www.tensorflow.org/datasets/api_docs/python/tfds/as_dataframe)):\n\nDisplay examples... \n\ndownsampled_imagenet/64x64\n--------------------------\n\n- **Config description**: A dataset consisting of Train and Validation images\n of 64x64 resolution.\n\n- **Download size** : `11.73 GiB`\n\n- **Dataset size** : `10.80 GiB`\n\n- **Figure**\n ([tfds.show_examples](https://www.tensorflow.org/datasets/api_docs/python/tfds/visualization/show_examples)):\n\n- **Examples** ([tfds.as_dataframe](https://www.tensorflow.org/datasets/api_docs/python/tfds/as_dataframe)):\n\nDisplay examples..."]]