wake_vision
Stay organized with collections
Save and categorize content based on your preferences.
Wake Vision is a large, high-quality dataset featuring over 6 million images,
significantly exceeding the scale and diversity of current tinyML datasets
(100x). This dataset includes images with annotations of whether each image
contains a person. Additionally, it incorporates a comprehensive fine-grained
benchmark to assess fairness and robustness, covering perceived gender,
perceived age, subject distance, lighting conditions, and depictions. The Wake
Vision labels are derived from Open Image's annotations which are licensed by
Google LLC under CC BY 4.0 license. The images are listed as having a CC BY 2.0
license. Note from Open Images: "while we tried to identify images that are
licensed under a Creative Commons Attribution license, we make no
representations or warranties regarding the license status of each image and you
should verify the license for each image yourself."
Split |
Examples |
'test' |
55,763 |
'train_large' |
5,760,428 |
'train_quality' |
1,248,230 |
'validation' |
18,582 |
FeaturesDict({
'age_unknown': ClassLabel(shape=(), dtype=int64, num_classes=2),
'body_part': ClassLabel(shape=(), dtype=int64, num_classes=2),
'bright': ClassLabel(shape=(), dtype=int64, num_classes=2),
'dark': ClassLabel(shape=(), dtype=int64, num_classes=2),
'depiction': ClassLabel(shape=(), dtype=int64, num_classes=2),
'far': ClassLabel(shape=(), dtype=int64, num_classes=2),
'filename': Text(shape=(), dtype=string),
'gender_unknown': ClassLabel(shape=(), dtype=int64, num_classes=2),
'image': Image(shape=(None, None, 3), dtype=uint8),
'medium_distance': ClassLabel(shape=(), dtype=int64, num_classes=2),
'middle_age': ClassLabel(shape=(), dtype=int64, num_classes=2),
'near': ClassLabel(shape=(), dtype=int64, num_classes=2),
'non-person_depiction': ClassLabel(shape=(), dtype=int64, num_classes=2),
'non-person_non-depiction': ClassLabel(shape=(), dtype=int64, num_classes=2),
'normal_lighting': ClassLabel(shape=(), dtype=int64, num_classes=2),
'older': ClassLabel(shape=(), dtype=int64, num_classes=2),
'person': ClassLabel(shape=(), dtype=int64, num_classes=2),
'person_depiction': ClassLabel(shape=(), dtype=int64, num_classes=2),
'predominantly_female': ClassLabel(shape=(), dtype=int64, num_classes=2),
'predominantly_male': ClassLabel(shape=(), dtype=int64, num_classes=2),
'young': ClassLabel(shape=(), dtype=int64, num_classes=2),
})
Feature |
Class |
Shape |
Dtype |
Description |
|
FeaturesDict |
|
|
|
age_unknown |
ClassLabel |
|
int64 |
|
body_part |
ClassLabel |
|
int64 |
|
bright |
ClassLabel |
|
int64 |
|
dark |
ClassLabel |
|
int64 |
|
depiction |
ClassLabel |
|
int64 |
|
far |
ClassLabel |
|
int64 |
|
filename |
Text |
|
string |
|
gender_unknown |
ClassLabel |
|
int64 |
|
image |
Image |
(None, None, 3) |
uint8 |
|
medium_distance |
ClassLabel |
|
int64 |
|
middle_age |
ClassLabel |
|
int64 |
|
near |
ClassLabel |
|
int64 |
|
non-person_depiction |
ClassLabel |
|
int64 |
|
non-person_non-depiction |
ClassLabel |
|
int64 |
|
normal_lighting |
ClassLabel |
|
int64 |
|
older |
ClassLabel |
|
int64 |
|
person |
ClassLabel |
|
int64 |
|
person_depiction |
ClassLabel |
|
int64 |
|
predominantly_female |
ClassLabel |
|
int64 |
|
predominantly_male |
ClassLabel |
|
int64 |
|
young |
ClassLabel |
|
int64 |
|

@article{banbury2024wake,
title={Wake Vision: A Large-scale, Diverse Dataset and Benchmark Suite for TinyML Person Detection},
author={Banbury, Colby and Njor, Emil and Stewart, Matthew and Warden, Pete and Kudlur, Manjunath and Jeffries, Nat and Fafoutis, Xenofon and Reddi, Vijay Janapa},
journal={arXiv preprint arXiv:2405.00892},
year={2024}
}
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates.
Last updated 2025-03-14 UTC.
[[["Easy to understand","easyToUnderstand","thumb-up"],["Solved my problem","solvedMyProblem","thumb-up"],["Other","otherUp","thumb-up"]],[["Missing the information I need","missingTheInformationINeed","thumb-down"],["Too complicated / too many steps","tooComplicatedTooManySteps","thumb-down"],["Out of date","outOfDate","thumb-down"],["Samples / code issue","samplesCodeIssue","thumb-down"],["Other","otherDown","thumb-down"]],["Last updated 2025-03-14 UTC."],[],[],null,["# wake_vision\n\n\u003cbr /\u003e\n\n- **Description**:\n\nWake Vision is a large, high-quality dataset featuring over 6 million images,\nsignificantly exceeding the scale and diversity of current tinyML datasets\n(100x). This dataset includes images with annotations of whether each image\ncontains a person. Additionally, it incorporates a comprehensive fine-grained\nbenchmark to assess fairness and robustness, covering perceived gender,\nperceived age, subject distance, lighting conditions, and depictions. The Wake\nVision labels are derived from Open Image's annotations which are licensed by\nGoogle LLC under CC BY 4.0 license. The images are listed as having a CC BY 2.0\nlicense. Note from Open Images: \"while we tried to identify images that are\nlicensed under a Creative Commons Attribution license, we make no\nrepresentations or warranties regarding the license status of each image and you\nshould verify the license for each image yourself.\"\n\n- **Homepage** :\n \u003chttps://dataverse.harvard.edu/dataset.xhtml?persistentId=doi%3A10.7910%2FDVN%2F1HOPXC\u003e\n\n- **Source code** :\n [`tfds.datasets.wake_vision.Builder`](https://github.com/tensorflow/datasets/tree/master/tensorflow_datasets/datasets/wake_vision/wake_vision_dataset_builder.py)\n\n- **Versions**:\n\n - **`1.0.0`** (default): Initial TensorFlow Datasets release. Note that this is based on the 2.0 version of Wake Vision on Harvard Dataverse.\n- **Download size** : `Unknown size`\n\n- **Dataset size** : `239.25 GiB`\n\n- **Auto-cached**\n ([documentation](https://www.tensorflow.org/datasets/performances#auto-caching)):\n No\n\n- **Splits**:\n\n| Split | Examples |\n|-------------------|-----------|\n| `'test'` | 55,763 |\n| `'train_large'` | 5,760,428 |\n| `'train_quality'` | 1,248,230 |\n| `'validation'` | 18,582 |\n\n- **Feature structure**:\n\n FeaturesDict({\n 'age_unknown': ClassLabel(shape=(), dtype=int64, num_classes=2),\n 'body_part': ClassLabel(shape=(), dtype=int64, num_classes=2),\n 'bright': ClassLabel(shape=(), dtype=int64, num_classes=2),\n 'dark': ClassLabel(shape=(), dtype=int64, num_classes=2),\n 'depiction': ClassLabel(shape=(), dtype=int64, num_classes=2),\n 'far': ClassLabel(shape=(), dtype=int64, num_classes=2),\n 'filename': Text(shape=(), dtype=string),\n 'gender_unknown': ClassLabel(shape=(), dtype=int64, num_classes=2),\n 'image': Image(shape=(None, None, 3), dtype=uint8),\n 'medium_distance': ClassLabel(shape=(), dtype=int64, num_classes=2),\n 'middle_age': ClassLabel(shape=(), dtype=int64, num_classes=2),\n 'near': ClassLabel(shape=(), dtype=int64, num_classes=2),\n 'non-person_depiction': ClassLabel(shape=(), dtype=int64, num_classes=2),\n 'non-person_non-depiction': ClassLabel(shape=(), dtype=int64, num_classes=2),\n 'normal_lighting': ClassLabel(shape=(), dtype=int64, num_classes=2),\n 'older': ClassLabel(shape=(), dtype=int64, num_classes=2),\n 'person': ClassLabel(shape=(), dtype=int64, num_classes=2),\n 'person_depiction': ClassLabel(shape=(), dtype=int64, num_classes=2),\n 'predominantly_female': ClassLabel(shape=(), dtype=int64, num_classes=2),\n 'predominantly_male': ClassLabel(shape=(), dtype=int64, num_classes=2),\n 'young': ClassLabel(shape=(), dtype=int64, num_classes=2),\n })\n\n- **Feature documentation**:\n\n| Feature | Class | Shape | Dtype | Description |\n|--------------------------|--------------|-----------------|--------|-------------|\n| | FeaturesDict | | | |\n| age_unknown | ClassLabel | | int64 | |\n| body_part | ClassLabel | | int64 | |\n| bright | ClassLabel | | int64 | |\n| dark | ClassLabel | | int64 | |\n| depiction | ClassLabel | | int64 | |\n| far | ClassLabel | | int64 | |\n| filename | Text | | string | |\n| gender_unknown | ClassLabel | | int64 | |\n| image | Image | (None, None, 3) | uint8 | |\n| medium_distance | ClassLabel | | int64 | |\n| middle_age | ClassLabel | | int64 | |\n| near | ClassLabel | | int64 | |\n| non-person_depiction | ClassLabel | | int64 | |\n| non-person_non-depiction | ClassLabel | | int64 | |\n| normal_lighting | ClassLabel | | int64 | |\n| older | ClassLabel | | int64 | |\n| person | ClassLabel | | int64 | |\n| person_depiction | ClassLabel | | int64 | |\n| predominantly_female | ClassLabel | | int64 | |\n| predominantly_male | ClassLabel | | int64 | |\n| young | ClassLabel | | int64 | |\n\n- **Supervised keys** (See\n [`as_supervised` doc](https://www.tensorflow.org/datasets/api_docs/python/tfds/load#args)):\n `('image', 'person')`\n\n- **Figure**\n ([tfds.show_examples](https://www.tensorflow.org/datasets/api_docs/python/tfds/visualization/show_examples)):\n\n- **Examples** ([tfds.as_dataframe](https://www.tensorflow.org/datasets/api_docs/python/tfds/as_dataframe)):\n\nDisplay examples... \n\n- **Citation**:\n\n @article{banbury2024wake,\n title={Wake Vision: A Large-scale, Diverse Dataset and Benchmark Suite for TinyML Person Detection},\n author={Banbury, Colby and Njor, Emil and Stewart, Matthew and Warden, Pete and Kudlur, Manjunath and Jeffries, Nat and Fafoutis, Xenofon and Reddi, Vijay Janapa},\n journal={arXiv preprint arXiv:2405.00892},\n year={2024}\n }"]]