viola
Stay organized with collections
Save and categorize content based on your preferences.
Franka robot interacting with stylized kitchen tasks
Split |
Examples |
'test' |
15 |
'train' |
135 |
FeaturesDict({
'steps': Dataset({
'action': FeaturesDict({
'gripper_closedness_action': float32,
'rotation_delta': Tensor(shape=(3,), dtype=float32),
'terminate_episode': float32,
'world_vector': Tensor(shape=(3,), dtype=float32),
}),
'is_first': bool,
'is_last': bool,
'is_terminal': bool,
'observation': FeaturesDict({
'agentview_rgb': Image(shape=(224, 224, 3), dtype=uint8, description=RGB captured by workspace camera),
'ee_states': Tensor(shape=(16,), dtype=float32, description=Pose of the end effector specified as a homogenous matrix.),
'eye_in_hand_rgb': Image(shape=(224, 224, 3), dtype=uint8, description=RGB captured by in hand camera),
'gripper_states': Tensor(shape=(1,), dtype=float32, description=gripper_states = 0 means the gripper is fully closed. The value represents the gripper width of Franka Panda Gripper.),
'joint_states': Tensor(shape=(7,), dtype=float32, description=joint values),
'natural_language_embedding': Tensor(shape=(512,), dtype=float32),
'natural_language_instruction': string,
}),
'reward': Scalar(shape=(), dtype=float32),
}),
})
Feature |
Class |
Shape |
Dtype |
Description |
|
FeaturesDict |
|
|
|
steps |
Dataset |
|
|
|
steps/action |
FeaturesDict |
|
|
|
steps/action/gripper_closedness_action |
Tensor |
|
float32 |
|
steps/action/rotation_delta |
Tensor |
(3,) |
float32 |
|
steps/action/terminate_episode |
Tensor |
|
float32 |
|
steps/action/world_vector |
Tensor |
(3,) |
float32 |
|
steps/is_first |
Tensor |
|
bool |
|
steps/is_last |
Tensor |
|
bool |
|
steps/is_terminal |
Tensor |
|
bool |
|
steps/observation |
FeaturesDict |
|
|
|
steps/observation/agentview_rgb |
Image |
(224, 224, 3) |
uint8 |
RGB captured by workspace camera |
steps/observation/ee_states |
Tensor |
(16,) |
float32 |
Pose of the end effector specified as a homogenous matrix. |
steps/observation/eye_in_hand_rgb |
Image |
(224, 224, 3) |
uint8 |
RGB captured by in hand camera |
steps/observation/gripper_states |
Tensor |
(1,) |
float32 |
gripper_states = 0 means the gripper is fully closed. The value represents the gripper width of Franka Panda Gripper. |
steps/observation/joint_states |
Tensor |
(7,) |
float32 |
joint values |
steps/observation/natural_language_embedding |
Tensor |
(512,) |
float32 |
|
steps/observation/natural_language_instruction |
Tensor |
|
string |
|
steps/reward |
Scalar |
|
float32 |
|
@article{zhu2022viola,
title={VIOLA: Imitation Learning for Vision-Based Manipulation with Object Proposal Priors},
author={Zhu, Yifeng and Joshi, Abhishek and Stone, Peter and Zhu, Yuke},
journal={6th Annual Conference on Robot Learning (CoRL)},
year={2022}
}
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates.
Last updated 2024-12-11 UTC.
[[["Easy to understand","easyToUnderstand","thumb-up"],["Solved my problem","solvedMyProblem","thumb-up"],["Other","otherUp","thumb-up"]],[["Missing the information I need","missingTheInformationINeed","thumb-down"],["Too complicated / too many steps","tooComplicatedTooManySteps","thumb-down"],["Out of date","outOfDate","thumb-down"],["Samples / code issue","samplesCodeIssue","thumb-down"],["Other","otherDown","thumb-down"]],["Last updated 2024-12-11 UTC."],[],[],null,["# viola\n\n\u003cbr /\u003e\n\n- **Description**:\n\nFranka robot interacting with stylized kitchen tasks\n\n- **Homepage** :\n \u003chttps://ut-austin-rpl.github.io/VIOLA/\u003e\n\n- **Source code** :\n [`tfds.robotics.rtx.Viola`](https://github.com/tensorflow/datasets/tree/master/tensorflow_datasets/robotics/rtx/rtx.py)\n\n- **Versions**:\n\n - **`0.1.0`** (default): Initial release.\n- **Download size** : `Unknown size`\n\n- **Dataset size** : `10.40 GiB`\n\n- **Auto-cached**\n ([documentation](https://www.tensorflow.org/datasets/performances#auto-caching)):\n No\n\n- **Splits**:\n\n| Split | Examples |\n|-----------|----------|\n| `'test'` | 15 |\n| `'train'` | 135 |\n\n- **Feature structure**:\n\n FeaturesDict({\n 'steps': Dataset({\n 'action': FeaturesDict({\n 'gripper_closedness_action': float32,\n 'rotation_delta': Tensor(shape=(3,), dtype=float32),\n 'terminate_episode': float32,\n 'world_vector': Tensor(shape=(3,), dtype=float32),\n }),\n 'is_first': bool,\n 'is_last': bool,\n 'is_terminal': bool,\n 'observation': FeaturesDict({\n 'agentview_rgb': Image(shape=(224, 224, 3), dtype=uint8, description=RGB captured by workspace camera),\n 'ee_states': Tensor(shape=(16,), dtype=float32, description=Pose of the end effector specified as a homogenous matrix.),\n 'eye_in_hand_rgb': Image(shape=(224, 224, 3), dtype=uint8, description=RGB captured by in hand camera),\n 'gripper_states': Tensor(shape=(1,), dtype=float32, description=gripper_states = 0 means the gripper is fully closed. The value represents the gripper width of Franka Panda Gripper.),\n 'joint_states': Tensor(shape=(7,), dtype=float32, description=joint values),\n 'natural_language_embedding': Tensor(shape=(512,), dtype=float32),\n 'natural_language_instruction': string,\n }),\n 'reward': Scalar(shape=(), dtype=float32),\n }),\n })\n\n- **Feature documentation**:\n\n| Feature | Class | Shape | Dtype | Description |\n|------------------------------------------------|--------------|---------------|---------|-----------------------------------------------------------------------------------------------------------------------|\n| | FeaturesDict | | | |\n| steps | Dataset | | | |\n| steps/action | FeaturesDict | | | |\n| steps/action/gripper_closedness_action | Tensor | | float32 | |\n| steps/action/rotation_delta | Tensor | (3,) | float32 | |\n| steps/action/terminate_episode | Tensor | | float32 | |\n| steps/action/world_vector | Tensor | (3,) | float32 | |\n| steps/is_first | Tensor | | bool | |\n| steps/is_last | Tensor | | bool | |\n| steps/is_terminal | Tensor | | bool | |\n| steps/observation | FeaturesDict | | | |\n| steps/observation/agentview_rgb | Image | (224, 224, 3) | uint8 | RGB captured by workspace camera |\n| steps/observation/ee_states | Tensor | (16,) | float32 | Pose of the end effector specified as a homogenous matrix. |\n| steps/observation/eye_in_hand_rgb | Image | (224, 224, 3) | uint8 | RGB captured by in hand camera |\n| steps/observation/gripper_states | Tensor | (1,) | float32 | gripper_states = 0 means the gripper is fully closed. The value represents the gripper width of Franka Panda Gripper. |\n| steps/observation/joint_states | Tensor | (7,) | float32 | joint values |\n| steps/observation/natural_language_embedding | Tensor | (512,) | float32 | |\n| steps/observation/natural_language_instruction | Tensor | | string | |\n| steps/reward | Scalar | | float32 | |\n\n- **Supervised keys** (See\n [`as_supervised` doc](https://www.tensorflow.org/datasets/api_docs/python/tfds/load#args)):\n `None`\n\n- **Figure**\n ([tfds.show_examples](https://www.tensorflow.org/datasets/api_docs/python/tfds/visualization/show_examples)):\n Not supported.\n\n- **Examples**\n ([tfds.as_dataframe](https://www.tensorflow.org/datasets/api_docs/python/tfds/as_dataframe)):\n\nDisplay examples... \n\n- **Citation**:\n\n @article{zhu2022viola,\n title={VIOLA: Imitation Learning for Vision-Based Manipulation with Object Proposal Priors},\n author={Zhu, Yifeng and Joshi, Abhishek and Stone, Peter and Zhu, Yuke},\n journal={6th Annual Conference on Robot Learning (CoRL)},\n year={2022}\n }"]]