colorectal_histology
Stay organized with collections
Save and categorize content based on your preferences.
Classification of textures in colorectal cancer histology. Each example is a 150
x 150 x 3 RGB image of one of 8 classes.
Split |
Examples |
'train' |
5,000 |
FeaturesDict({
'filename': Text(shape=(), dtype=string),
'image': Image(shape=(150, 150, 3), dtype=uint8),
'label': ClassLabel(shape=(), dtype=int64, num_classes=8),
})
Feature |
Class |
Shape |
Dtype |
Description |
|
FeaturesDict |
|
|
|
filename |
Text |
|
string |
|
image |
Image |
(150, 150, 3) |
uint8 |
|
label
|
ClassLabel
|
|
int64
|
Eight classes:
0: 'tumour
epithelium',
1: 'simple
stroma', 2:
'complex
stroma' (stroma
that contains
single tumour
cells and/or
single immune
cells), 3:
'immune cell
conglomerates',
4: 'debris and
mucus', 5:
'mucosal
glands', 6:
'adipose
tissue', and
7:
'background'. |

@article{kather2016multi,
title={Multi-class texture analysis in colorectal cancer histology},
author={Kather, Jakob Nikolas and Weis, Cleo-Aron and Bianconi, Francesco and Melchers, Susanne M and Schad, Lothar R and Gaiser, Timo and Marx, Alexander and Z{"o}llner, Frank Gerrit},
journal={Scientific reports},
volume={6},
pages={27988},
year={2016},
publisher={Nature Publishing Group}
}
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates.
Last updated 2024-06-01 UTC.
[[["Easy to understand","easyToUnderstand","thumb-up"],["Solved my problem","solvedMyProblem","thumb-up"],["Other","otherUp","thumb-up"]],[["Missing the information I need","missingTheInformationINeed","thumb-down"],["Too complicated / too many steps","tooComplicatedTooManySteps","thumb-down"],["Out of date","outOfDate","thumb-down"],["Samples / code issue","samplesCodeIssue","thumb-down"],["Other","otherDown","thumb-down"]],["Last updated 2024-06-01 UTC."],[],[],null,["# colorectal_histology\n\n\u003cbr /\u003e\n\n- **Description**:\n\nClassification of textures in colorectal cancer histology. Each example is a 150\nx 150 x 3 RGB image of one of 8 classes.\n\n- **Homepage** :\n \u003chttps://zenodo.org/record/53169#.XGZemKwzbmG\u003e\n\n- **Source code** :\n [`tfds.image_classification.ColorectalHistology`](https://github.com/tensorflow/datasets/tree/master/tensorflow_datasets/image_classification/colorectal_histology.py)\n\n- **Versions**:\n\n - **`2.0.0`** (default): New split API (\u003chttps://tensorflow.org/datasets/splits\u003e)\n- **Download size** : `246.14 MiB`\n\n- **Dataset size** : `179.23 MiB`\n\n- **Auto-cached**\n ([documentation](https://www.tensorflow.org/datasets/performances#auto-caching)):\n Only when `shuffle_files=False` (train)\n\n- **Splits**:\n\n| Split | Examples |\n|-----------|----------|\n| `'train'` | 5,000 |\n\n- **Feature structure**:\n\n FeaturesDict({\n 'filename': Text(shape=(), dtype=string),\n 'image': Image(shape=(150, 150, 3), dtype=uint8),\n 'label': ClassLabel(shape=(), dtype=int64, num_classes=8),\n })\n\n- **Feature documentation**:\n\n| Feature | Class | Shape | Dtype | Description |\n|----------|--------------|---------------|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| | FeaturesDict | | | |\n| filename | Text | | string | |\n| image | Image | (150, 150, 3) | uint8 | |\n| label | ClassLabel | | int64 | Eight classes: 0: 'tumour epithelium', 1: 'simple stroma', 2: 'complex stroma' (stroma that contains single tumour cells and/or single immune cells), 3: 'immune cell conglomerates', 4: 'debris and mucus', 5: 'mucosal glands', 6: 'adipose tissue', and 7: 'background'. |\n\n- **Supervised keys** (See\n [`as_supervised` doc](https://www.tensorflow.org/datasets/api_docs/python/tfds/load#args)):\n `('image', 'label')`\n\n- **Figure**\n ([tfds.show_examples](https://www.tensorflow.org/datasets/api_docs/python/tfds/visualization/show_examples)):\n\n- **Examples** ([tfds.as_dataframe](https://www.tensorflow.org/datasets/api_docs/python/tfds/as_dataframe)):\n\nDisplay examples... \n\n- **Citation**:\n\n @article{kather2016multi,\n title={Multi-class texture analysis in colorectal cancer histology},\n author={Kather, Jakob Nikolas and Weis, Cleo-Aron and Bianconi, Francesco and Melchers, Susanne M and Schad, Lothar R and Gaiser, Timo and Marx, Alexander and Z{\"o}llner, Frank Gerrit},\n journal={Scientific reports},\n volume={6},\n pages={27988},\n year={2016},\n publisher={Nature Publishing Group}\n }"]]