math_qa
Stay organized with collections
Save and categorize content based on your preferences.
A large-scale dataset of math word problems and an interpretable neural math
problem solver that learns to map problems to operation programs.
Split |
Examples |
'test' |
2,985 |
'train' |
29,837 |
'validation' |
4,475 |
FeaturesDict({
'Problem': Text(shape=(), dtype=string),
'Rationale': Text(shape=(), dtype=string),
'annotated_formula': Text(shape=(), dtype=string),
'category': Text(shape=(), dtype=string),
'correct': Text(shape=(), dtype=string),
'correct_option': Text(shape=(), dtype=string),
'linear_formula': Text(shape=(), dtype=string),
'options': Text(shape=(), dtype=string),
})
Feature |
Class |
Shape |
Dtype |
Description |
|
FeaturesDict |
|
|
|
Problem |
Text |
|
string |
|
Rationale |
Text |
|
string |
|
annotated_formula |
Text |
|
string |
|
category |
Text |
|
string |
|
correct |
Text |
|
string |
|
correct_option |
Text |
|
string |
|
linear_formula |
Text |
|
string |
|
options |
Text |
|
string |
|
@misc{amini2019mathqa,
title={MathQA: Towards Interpretable Math Word Problem Solving with Operation-Based Formalisms},
author={Aida Amini and Saadia Gabriel and Peter Lin and Rik Koncel-Kedziorski and Yejin Choi and Hannaneh Hajishirzi},
year={2019},
eprint={1905.13319},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates.
Last updated 2022-12-14 UTC.
[[["Easy to understand","easyToUnderstand","thumb-up"],["Solved my problem","solvedMyProblem","thumb-up"],["Other","otherUp","thumb-up"]],[["Missing the information I need","missingTheInformationINeed","thumb-down"],["Too complicated / too many steps","tooComplicatedTooManySteps","thumb-down"],["Out of date","outOfDate","thumb-down"],["Samples / code issue","samplesCodeIssue","thumb-down"],["Other","otherDown","thumb-down"]],["Last updated 2022-12-14 UTC."],[],[],null,["# math_qa\n\n\u003cbr /\u003e\n\n- **Description**:\n\nA large-scale dataset of math word problems and an interpretable neural math\nproblem solver that learns to map problems to operation programs.\n\n- **Additional Documentation** :\n [Explore on Papers With Code\n north_east](https://paperswithcode.com/dataset/mathqa)\n\n- **Homepage** : \u003chttps://math-qa.github.io/\u003e\n\n- **Source code** :\n [`tfds.datasets.math_qa.Builder`](https://github.com/tensorflow/datasets/tree/master/tensorflow_datasets/datasets/math_qa/math_qa_dataset_builder.py)\n\n- **Versions**:\n\n - **`1.0.0`** (default): Initial release.\n- **Download size** : `6.96 MiB`\n\n- **Dataset size** : `27.15 MiB`\n\n- **Auto-cached**\n ([documentation](https://www.tensorflow.org/datasets/performances#auto-caching)):\n Yes\n\n- **Splits**:\n\n| Split | Examples |\n|----------------|----------|\n| `'test'` | 2,985 |\n| `'train'` | 29,837 |\n| `'validation'` | 4,475 |\n\n- **Feature structure**:\n\n FeaturesDict({\n 'Problem': Text(shape=(), dtype=string),\n 'Rationale': Text(shape=(), dtype=string),\n 'annotated_formula': Text(shape=(), dtype=string),\n 'category': Text(shape=(), dtype=string),\n 'correct': Text(shape=(), dtype=string),\n 'correct_option': Text(shape=(), dtype=string),\n 'linear_formula': Text(shape=(), dtype=string),\n 'options': Text(shape=(), dtype=string),\n })\n\n- **Feature documentation**:\n\n| Feature | Class | Shape | Dtype | Description |\n|-------------------|--------------|-------|--------|-------------|\n| | FeaturesDict | | | |\n| Problem | Text | | string | |\n| Rationale | Text | | string | |\n| annotated_formula | Text | | string | |\n| category | Text | | string | |\n| correct | Text | | string | |\n| correct_option | Text | | string | |\n| linear_formula | Text | | string | |\n| options | Text | | string | |\n\n- **Supervised keys** (See\n [`as_supervised` doc](https://www.tensorflow.org/datasets/api_docs/python/tfds/load#args)):\n `None`\n\n- **Figure**\n ([tfds.show_examples](https://www.tensorflow.org/datasets/api_docs/python/tfds/visualization/show_examples)):\n Not supported.\n\n- **Examples**\n ([tfds.as_dataframe](https://www.tensorflow.org/datasets/api_docs/python/tfds/as_dataframe)):\n\nDisplay examples... \n\n- **Citation**:\n\n @misc{amini2019mathqa,\n title={MathQA: Towards Interpretable Math Word Problem Solving with Operation-Based Formalisms},\n author={Aida Amini and Saadia Gabriel and Peter Lin and Rik Koncel-Kedziorski and Yejin Choi and Hannaneh Hajishirzi},\n year={2019},\n eprint={1905.13319},\n archivePrefix={arXiv},\n primaryClass={cs.CL}\n }"]]