bccd
Stay organized with collections
Save and categorize content based on your preferences.
BCCD Dataset is a small-scale dataset for blood cells detection.
Thanks the original data and annotations from cosmicad and akshaylamba. The
original dataset is re-organized into VOC format. BCCD Dataset is under MIT
licence.
Data preparation is important to use machine learning. In this project, the
Faster R-CNN algorithm from keras-frcnn for Object Detection is used. From this
dataset, nicolaschen1 developed two Python scripts to make preparation data (CSV
file and images) for recognition of abnormalities in blood cells on medical
images.
export.py: it creates the file "test.csv" with all data needed: filename,
class_name, x1,y1,x2,y2. plot.py: it plots the boxes for each image and save it
in a new directory.
Image Type : jpeg(JPEG) Width x Height : 640 x 480
Split |
Examples |
'test' |
72 |
'train' |
205 |
'validation' |
87 |
FeaturesDict({
'image': Image(shape=(480, 640, 3), dtype=uint8),
'image/filename': Text(shape=(), dtype=string),
'objects': Sequence({
'bbox': BBoxFeature(shape=(4,), dtype=float32),
'label': ClassLabel(shape=(), dtype=int64, num_classes=3),
}),
})
Feature |
Class |
Shape |
Dtype |
Description |
|
FeaturesDict |
|
|
|
image |
Image |
(480, 640, 3) |
uint8 |
|
image/filename |
Text |
|
string |
|
objects |
Sequence |
|
|
|
objects/bbox |
BBoxFeature |
(4,) |
float32 |
|
objects/label |
ClassLabel |
|
int64 |
|

@ONLINE {BCCD_Dataset,
author = "Shenggan",
title = "BCCD Dataset",
year = "2017",
url = "https://github.com/Shenggan/BCCD_Dataset"
}
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates.
Last updated 2022-12-06 UTC.
[[["Easy to understand","easyToUnderstand","thumb-up"],["Solved my problem","solvedMyProblem","thumb-up"],["Other","otherUp","thumb-up"]],[["Missing the information I need","missingTheInformationINeed","thumb-down"],["Too complicated / too many steps","tooComplicatedTooManySteps","thumb-down"],["Out of date","outOfDate","thumb-down"],["Samples / code issue","samplesCodeIssue","thumb-down"],["Other","otherDown","thumb-down"]],["Last updated 2022-12-06 UTC."],[],[],null,["# bccd\n\n\u003cbr /\u003e\n\n- **Description**:\n\nBCCD Dataset is a small-scale dataset for blood cells detection.\n\nThanks the original data and annotations from cosmicad and akshaylamba. The\noriginal dataset is re-organized into VOC format. BCCD Dataset is under MIT\nlicence.\n\nData preparation is important to use machine learning. In this project, the\nFaster R-CNN algorithm from keras-frcnn for Object Detection is used. From this\ndataset, nicolaschen1 developed two Python scripts to make preparation data (CSV\nfile and images) for recognition of abnormalities in blood cells on medical\nimages.\n\nexport.py: it creates the file \"test.csv\" with all data needed: filename,\nclass_name, x1,y1,x2,y2. plot.py: it plots the boxes for each image and save it\nin a new directory.\n\nImage Type : jpeg(JPEG) Width x Height : 640 x 480\n\n- **Additional Documentation** :\n [Explore on Papers With Code\n north_east](https://paperswithcode.com/dataset/bccd)\n\n- **Homepage** :\n \u003chttps://github.com/Shenggan/BCCD_Dataset\u003e\n\n- **Source code** :\n [`tfds.datasets.bccd.Builder`](https://github.com/tensorflow/datasets/tree/master/tensorflow_datasets/datasets/bccd/bccd_dataset_builder.py)\n\n- **Versions**:\n\n - **`1.0.0`** (default): No release notes.\n- **Download size** : `7.51 MiB`\n\n- **Dataset size** : `7.34 MiB`\n\n- **Auto-cached**\n ([documentation](https://www.tensorflow.org/datasets/performances#auto-caching)):\n Yes\n\n- **Splits**:\n\n| Split | Examples |\n|----------------|----------|\n| `'test'` | 72 |\n| `'train'` | 205 |\n| `'validation'` | 87 |\n\n- **Feature structure**:\n\n FeaturesDict({\n 'image': Image(shape=(480, 640, 3), dtype=uint8),\n 'image/filename': Text(shape=(), dtype=string),\n 'objects': Sequence({\n 'bbox': BBoxFeature(shape=(4,), dtype=float32),\n 'label': ClassLabel(shape=(), dtype=int64, num_classes=3),\n }),\n })\n\n- **Feature documentation**:\n\n| Feature | Class | Shape | Dtype | Description |\n|----------------|--------------|---------------|---------|-------------|\n| | FeaturesDict | | | |\n| image | Image | (480, 640, 3) | uint8 | |\n| image/filename | Text | | string | |\n| objects | Sequence | | | |\n| objects/bbox | BBoxFeature | (4,) | float32 | |\n| objects/label | ClassLabel | | int64 | |\n\n- **Supervised keys** (See\n [`as_supervised` doc](https://www.tensorflow.org/datasets/api_docs/python/tfds/load#args)):\n `None`\n\n- **Figure**\n ([tfds.show_examples](https://www.tensorflow.org/datasets/api_docs/python/tfds/visualization/show_examples)):\n\n- **Examples** ([tfds.as_dataframe](https://www.tensorflow.org/datasets/api_docs/python/tfds/as_dataframe)):\n\nDisplay examples... \n\n- **Citation**:\n\n @ONLINE {BCCD_Dataset,\n author = \"Shenggan\",\n title = \"BCCD Dataset\",\n year = \"2017\",\n url = \"https://github.com/Shenggan/BCCD_Dataset\"\n }"]]