malaria
Stay organized with collections
Save and categorize content based on your preferences.
The Malaria dataset contains a total of 27,558 cell images with equal instances
of parasitized and uninfected cells from the thin blood smear slide images of
segmented cells.
Split |
Examples |
'train' |
27,558 |
FeaturesDict({
'image': Image(shape=(None, None, 3), dtype=uint8),
'label': ClassLabel(shape=(), dtype=int64, num_classes=2),
})
Feature |
Class |
Shape |
Dtype |
Description |
|
FeaturesDict |
|
|
|
image |
Image |
(None, None, 3) |
uint8 |
|
label |
ClassLabel |
|
int64 |
|

@article{rajaraman2018pre,
title={Pre-trained convolutional neural networks as feature extractors toward
improved malaria parasite detection in thin blood smear images},
author={Rajaraman, Sivaramakrishnan and Antani, Sameer K and Poostchi, Mahdieh
and Silamut, Kamolrat and Hossain, Md A and Maude, Richard J and Jaeger,
Stefan and Thoma, George R},
journal={PeerJ},
volume={6},
pages={e4568},
year={2018},
publisher={PeerJ Inc.}
}
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates.
Last updated 2024-06-01 UTC.
[[["Easy to understand","easyToUnderstand","thumb-up"],["Solved my problem","solvedMyProblem","thumb-up"],["Other","otherUp","thumb-up"]],[["Missing the information I need","missingTheInformationINeed","thumb-down"],["Too complicated / too many steps","tooComplicatedTooManySteps","thumb-down"],["Out of date","outOfDate","thumb-down"],["Samples / code issue","samplesCodeIssue","thumb-down"],["Other","otherDown","thumb-down"]],["Last updated 2024-06-01 UTC."],[],[],null,["# malaria\n\n\u003cbr /\u003e\n\n- **Description**:\n\nThe Malaria dataset contains a total of 27,558 cell images with equal instances\nof parasitized and uninfected cells from the thin blood smear slide images of\nsegmented cells.\n\n- **Additional Documentation** :\n [Explore on Papers With Code\n north_east](https://paperswithcode.com/dataset/malaria-dataset)\n\n- **Homepage** :\n \u003chttps://lhncbc.nlm.nih.gov/publication/pub9932\u003e\n\n- **Source code** :\n [`tfds.datasets.malaria.Builder`](https://github.com/tensorflow/datasets/tree/master/tensorflow_datasets/datasets/malaria/malaria_dataset_builder.py)\n\n- **Versions**:\n\n - **`1.0.0`** (default): No release notes.\n- **Download size** : `337.08 MiB`\n\n- **Dataset size** : `317.62 MiB`\n\n- **Auto-cached**\n ([documentation](https://www.tensorflow.org/datasets/performances#auto-caching)):\n No\n\n- **Splits**:\n\n| Split | Examples |\n|-----------|----------|\n| `'train'` | 27,558 |\n\n- **Feature structure**:\n\n FeaturesDict({\n 'image': Image(shape=(None, None, 3), dtype=uint8),\n 'label': ClassLabel(shape=(), dtype=int64, num_classes=2),\n })\n\n- **Feature documentation**:\n\n| Feature | Class | Shape | Dtype | Description |\n|---------|--------------|-----------------|-------|-------------|\n| | FeaturesDict | | | |\n| image | Image | (None, None, 3) | uint8 | |\n| label | ClassLabel | | int64 | |\n\n- **Supervised keys** (See\n [`as_supervised` doc](https://www.tensorflow.org/datasets/api_docs/python/tfds/load#args)):\n `('image', 'label')`\n\n- **Figure**\n ([tfds.show_examples](https://www.tensorflow.org/datasets/api_docs/python/tfds/visualization/show_examples)):\n\n- **Examples** ([tfds.as_dataframe](https://www.tensorflow.org/datasets/api_docs/python/tfds/as_dataframe)):\n\nDisplay examples... \n\n- **Citation**:\n\n @article{rajaraman2018pre,\n title={Pre-trained convolutional neural networks as feature extractors toward\n improved malaria parasite detection in thin blood smear images},\n author={Rajaraman, Sivaramakrishnan and Antani, Sameer K and Poostchi, Mahdieh\n and Silamut, Kamolrat and Hossain, Md A and Maude, Richard J and Jaeger,\n Stefan and Thoma, George R},\n journal={PeerJ},\n volume={6},\n pages={e4568},\n year={2018},\n publisher={PeerJ Inc.}\n }"]]