resisc45
Stay organized with collections
Save and categorize content based on your preferences.
Warning: Manual download required. See instructions below.
RESISC45 dataset is a publicly available benchmark for Remote Sensing Image
Scene Classification (RESISC), created by Northwestern Polytechnical University
(NWPU). This dataset contains 31,500 images, covering 45 scene classes with 700
images in each class.
Split
Examples
'train'
31,500
FeaturesDict ({
'filename' : Text ( shape = (), dtype = string ),
'image' : Image ( shape = ( 256 , 256 , 3 ), dtype = uint8 ),
'label' : ClassLabel ( shape = (), dtype = int64 , num_classes = 45 ),
})
Feature
Class
Shape
Dtype
Description
FeaturesDict
filename
Text
string
image
Image
(256, 256, 3)
uint8
label
ClassLabel
int64
@article { Cheng_2017 ,
title = { Remote Sensing Image Scene Classification : Benchmark and State of the Art } ,
volume = { 105 } ,
ISSN = { 1558 - 2256 } ,
url = { http : // dx . doi . org / 10.1109 / JPROC .2017.2675998 } ,
DOI = { 10.1109 / jproc .2017.2675998 } ,
number = { 10 } ,
journal = { Proceedings of the IEEE } ,
publisher = { Institute of Electrical and Electronics Engineers ( IEEE ) } ,
author = { Cheng , Gong and Han , Junwei and Lu , Xiaoqiang } ,
year = { 2017 } ,
month = { Oct } ,
pages = { 1865 - 1883 }
}
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License , and code samples are licensed under the Apache 2.0 License . For details, see the Google Developers Site Policies . Java is a registered trademark of Oracle and/or its affiliates.
Last updated 2022-12-21 UTC.
[[["Easy to understand","easyToUnderstand","thumb-up"],["Solved my problem","solvedMyProblem","thumb-up"],["Other","otherUp","thumb-up"]],[["Missing the information I need","missingTheInformationINeed","thumb-down"],["Too complicated / too many steps","tooComplicatedTooManySteps","thumb-down"],["Out of date","outOfDate","thumb-down"],["Samples / code issue","samplesCodeIssue","thumb-down"],["Other","otherDown","thumb-down"]],["Last updated 2022-12-21 UTC."],[],[],null,["# resisc45\n\n\u003cbr /\u003e\n\n| **Warning:** Manual download required. See instructions below.\n\n- **Description**:\n\nRESISC45 dataset is a publicly available benchmark for Remote Sensing Image\nScene Classification (RESISC), created by Northwestern Polytechnical University\n(NWPU). This dataset contains 31,500 images, covering 45 scene classes with 700\nimages in each class.\n\n- **Additional Documentation** :\n [Explore on Papers With Code\n north_east](https://paperswithcode.com/dataset/resisc45)\n\n- **Homepage** :\n \u003chttp://www.escience.cn/people/JunweiHan/NWPU-RESISC45.html\u003e\n\n- **Source code** :\n [`tfds.datasets.resisc45.Builder`](https://github.com/tensorflow/datasets/tree/master/tensorflow_datasets/datasets/resisc45/resisc45_dataset_builder.py)\n\n- **Versions**:\n\n - **`3.0.0`** (default): No release notes.\n- **Download size** : `Unknown size`\n\n- **Dataset size** : `407.97 MiB`\n\n- **Manual download instructions** : This dataset requires you to\n download the source data manually into `download_config.manual_dir`\n (defaults to `~/tensorflow_datasets/downloads/manual/`): \n\n Dataset can be downloaded from OneDrive:\n \u003chttps://1drv.ms/u/s!AmgKYzARBl5ca3HNaHIlzp_IXjs\u003e\n After downloading the rar file, please extract it to the manual_dir.\n\n- **Auto-cached**\n ([documentation](https://www.tensorflow.org/datasets/performances#auto-caching)):\n No\n\n- **Splits**:\n\n| Split | Examples |\n|-----------|----------|\n| `'train'` | 31,500 |\n\n- **Feature structure**:\n\n FeaturesDict({\n 'filename': Text(shape=(), dtype=string),\n 'image': Image(shape=(256, 256, 3), dtype=uint8),\n 'label': ClassLabel(shape=(), dtype=int64, num_classes=45),\n })\n\n- **Feature documentation**:\n\n| Feature | Class | Shape | Dtype | Description |\n|----------|--------------|---------------|--------|-------------|\n| | FeaturesDict | | | |\n| filename | Text | | string | |\n| image | Image | (256, 256, 3) | uint8 | |\n| label | ClassLabel | | int64 | |\n\n- **Supervised keys** (See\n [`as_supervised` doc](https://www.tensorflow.org/datasets/api_docs/python/tfds/load#args)):\n `('image', 'label')`\n\n- **Figure**\n ([tfds.show_examples](https://www.tensorflow.org/datasets/api_docs/python/tfds/visualization/show_examples)):\n\n- **Examples** ([tfds.as_dataframe](https://www.tensorflow.org/datasets/api_docs/python/tfds/as_dataframe)):\n\nDisplay examples... \n\n- **Citation**:\n\n @article{Cheng_2017,\n title={Remote Sensing Image Scene Classification: Benchmark and State of the Art},\n volume={105},\n ISSN={1558-2256},\n url={http://dx.doi.org/10.1109/JPROC.2017.2675998},\n DOI={10.1109/jproc.2017.2675998},\n number={10},\n journal={Proceedings of the IEEE},\n publisher={Institute of Electrical and Electronics Engineers (IEEE)},\n author={Cheng, Gong and Han, Junwei and Lu, Xiaoqiang},\n year={2017},\n month={Oct},\n pages={1865-1883}\n }"]]