stanford_online_products
Stay organized with collections
Save and categorize content based on your preferences.
Stanford Online Products Dataset
Split |
Examples |
'test' |
60,502 |
'train' |
59,551 |
FeaturesDict({
'class_id': ClassLabel(shape=(), dtype=int64, num_classes=22634),
'image': Image(shape=(None, None, 3), dtype=uint8),
'super_class_id': ClassLabel(shape=(), dtype=int64, num_classes=12),
'super_class_id/num': ClassLabel(shape=(), dtype=int64, num_classes=12),
})
Feature |
Class |
Shape |
Dtype |
Description |
|
FeaturesDict |
|
|
|
class_id |
ClassLabel |
|
int64 |
|
image |
Image |
(None, None, 3) |
uint8 |
|
super_class_id |
ClassLabel |
|
int64 |
|
super_class_id/num |
ClassLabel |
|
int64 |
|

@inproceedings{song2016deep,
author = {Song, Hyun Oh and Xiang, Yu and Jegelka, Stefanie and Savarese, Silvio},
title = {Deep Metric Learning via Lifted Structured Feature Embedding},
booktitle = {IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
year = {2016}
}
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates.
Last updated 2024-06-01 UTC.
[[["Easy to understand","easyToUnderstand","thumb-up"],["Solved my problem","solvedMyProblem","thumb-up"],["Other","otherUp","thumb-up"]],[["Missing the information I need","missingTheInformationINeed","thumb-down"],["Too complicated / too many steps","tooComplicatedTooManySteps","thumb-down"],["Out of date","outOfDate","thumb-down"],["Samples / code issue","samplesCodeIssue","thumb-down"],["Other","otherDown","thumb-down"]],["Last updated 2024-06-01 UTC."],[],[],null,["# stanford_online_products\n\n\u003cbr /\u003e\n\n- **Description**:\n\nStanford Online Products Dataset\n\n- **Additional Documentation** :\n [Explore on Papers With Code\n north_east](https://paperswithcode.com/dataset/stanford-online-products)\n\n- **Homepage** :\n \u003chttp://cvgl.stanford.edu/projects/lifted_struct/\u003e\n\n- **Source code** :\n [`tfds.datasets.stanford_online_products.Builder`](https://github.com/tensorflow/datasets/tree/master/tensorflow_datasets/datasets/stanford_online_products/stanford_online_products_dataset_builder.py)\n\n- **Versions**:\n\n - **`1.0.0`** (default): No release notes.\n- **Download size** : `2.87 GiB`\n\n- **Dataset size** : `2.89 GiB`\n\n- **Auto-cached**\n ([documentation](https://www.tensorflow.org/datasets/performances#auto-caching)):\n No\n\n- **Splits**:\n\n| Split | Examples |\n|-----------|----------|\n| `'test'` | 60,502 |\n| `'train'` | 59,551 |\n\n- **Feature structure**:\n\n FeaturesDict({\n 'class_id': ClassLabel(shape=(), dtype=int64, num_classes=22634),\n 'image': Image(shape=(None, None, 3), dtype=uint8),\n 'super_class_id': ClassLabel(shape=(), dtype=int64, num_classes=12),\n 'super_class_id/num': ClassLabel(shape=(), dtype=int64, num_classes=12),\n })\n\n- **Feature documentation**:\n\n| Feature | Class | Shape | Dtype | Description |\n|--------------------|--------------|-----------------|-------|-------------|\n| | FeaturesDict | | | |\n| class_id | ClassLabel | | int64 | |\n| image | Image | (None, None, 3) | uint8 | |\n| super_class_id | ClassLabel | | int64 | |\n| super_class_id/num | ClassLabel | | int64 | |\n\n- **Supervised keys** (See\n [`as_supervised` doc](https://www.tensorflow.org/datasets/api_docs/python/tfds/load#args)):\n `None`\n\n- **Figure**\n ([tfds.show_examples](https://www.tensorflow.org/datasets/api_docs/python/tfds/visualization/show_examples)):\n\n- **Examples** ([tfds.as_dataframe](https://www.tensorflow.org/datasets/api_docs/python/tfds/as_dataframe)):\n\nDisplay examples... \n\n- **Citation**:\n\n @inproceedings{song2016deep,\n author = {Song, Hyun Oh and Xiang, Yu and Jegelka, Stefanie and Savarese, Silvio},\n title = {Deep Metric Learning via Lifted Structured Feature Embedding},\n booktitle = {IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},\n year = {2016}\n }"]]