cos_e
Stay organized with collections
Save and categorize content based on your preferences.
Common Sense Explanations (CoS-E) allows for training language models to
automatically generate explanations that can be used during training and
inference in a novel Commonsense Auto-Generated Explanation (CAGE) framework.
Split |
Examples |
'train' |
9,741 |
'validation' |
1,221 |
FeaturesDict({
'abstractive_explanation': Text(shape=(), dtype=string),
'answer': Text(shape=(), dtype=string),
'choices': Sequence(Text(shape=(), dtype=string)),
'extractive_explanation': Text(shape=(), dtype=string),
'id': Text(shape=(), dtype=string),
'question': Text(shape=(), dtype=string),
})
Feature |
Class |
Shape |
Dtype |
Description |
|
FeaturesDict |
|
|
|
abstractive_explanation |
Text |
|
string |
|
answer |
Text |
|
string |
|
choices |
Sequence(Text) |
(None,) |
string |
|
extractive_explanation |
Text |
|
string |
|
id |
Text |
|
string |
|
question |
Text |
|
string |
|
@inproceedings{rajani2019explain,
title = "Explain Yourself! Leveraging Language models for Commonsense Reasoning",
author = "Rajani, Nazneen Fatema and
McCann, Bryan and
Xiong, Caiming and
Socher, Richard",
year="2019",
booktitle = "Proceedings of the 2019 Conference of the Association for Computational Linguistics (ACL2019)",
url ="https://arxiv.org/abs/1906.02361"
}
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates.
Last updated 2022-12-06 UTC.
[[["Easy to understand","easyToUnderstand","thumb-up"],["Solved my problem","solvedMyProblem","thumb-up"],["Other","otherUp","thumb-up"]],[["Missing the information I need","missingTheInformationINeed","thumb-down"],["Too complicated / too many steps","tooComplicatedTooManySteps","thumb-down"],["Out of date","outOfDate","thumb-down"],["Samples / code issue","samplesCodeIssue","thumb-down"],["Other","otherDown","thumb-down"]],["Last updated 2022-12-06 UTC."],[],[],null,["# cos_e\n\n\u003cbr /\u003e\n\n- **Description**:\n\nCommon Sense Explanations (CoS-E) allows for training language models to\nautomatically generate explanations that can be used during training and\ninference in a novel Commonsense Auto-Generated Explanation (CAGE) framework.\n\n- **Additional Documentation** :\n [Explore on Papers With Code\n north_east](https://paperswithcode.com/dataset/cos-e)\n\n- **Homepage** :\n \u003chttps://github.com/salesforce/cos-e\u003e\n\n- **Source code** :\n [`tfds.text.CosE`](https://github.com/tensorflow/datasets/tree/master/tensorflow_datasets/text/cos_e.py)\n\n- **Versions**:\n\n - **`0.0.1`** (default): No release notes.\n- **Download size** : `6.23 MiB`\n\n- **Dataset size** : `3.89 MiB`\n\n- **Auto-cached**\n ([documentation](https://www.tensorflow.org/datasets/performances#auto-caching)):\n Yes\n\n- **Splits**:\n\n| Split | Examples |\n|----------------|----------|\n| `'train'` | 9,741 |\n| `'validation'` | 1,221 |\n\n- **Feature structure**:\n\n FeaturesDict({\n 'abstractive_explanation': Text(shape=(), dtype=string),\n 'answer': Text(shape=(), dtype=string),\n 'choices': Sequence(Text(shape=(), dtype=string)),\n 'extractive_explanation': Text(shape=(), dtype=string),\n 'id': Text(shape=(), dtype=string),\n 'question': Text(shape=(), dtype=string),\n })\n\n- **Feature documentation**:\n\n| Feature | Class | Shape | Dtype | Description |\n|-------------------------|----------------|---------|--------|-------------|\n| | FeaturesDict | | | |\n| abstractive_explanation | Text | | string | |\n| answer | Text | | string | |\n| choices | Sequence(Text) | (None,) | string | |\n| extractive_explanation | Text | | string | |\n| id | Text | | string | |\n| question | Text | | string | |\n\n- **Supervised keys** (See\n [`as_supervised` doc](https://www.tensorflow.org/datasets/api_docs/python/tfds/load#args)):\n `None`\n\n- **Figure**\n ([tfds.show_examples](https://www.tensorflow.org/datasets/api_docs/python/tfds/visualization/show_examples)):\n Not supported.\n\n- **Examples**\n ([tfds.as_dataframe](https://www.tensorflow.org/datasets/api_docs/python/tfds/as_dataframe)):\n\nDisplay examples... \n\n- **Citation**:\n\n @inproceedings{rajani2019explain,\n title = \"Explain Yourself! Leveraging Language models for Commonsense Reasoning\",\n author = \"Rajani, Nazneen Fatema and\n McCann, Bryan and\n Xiong, Caiming and\n Socher, Richard\",\n year=\"2019\",\n booktitle = \"Proceedings of the 2019 Conference of the Association for Computational Linguistics (ACL2019)\",\n url =\"https://arxiv.org/abs/1906.02361\"\n }"]]