Stay organized with collections
Save and categorize content based on your preferences.
Description:
NEWSROOM is a large dataset for training and evaluating summarization systems.
It contains 1.3 million articles and summaries written by authors and editors in
the newsrooms of 38 major publications.
Dataset features includes:
text: Input news text.
summary: Summary for the news.
And additional features:
title: news title.
url: url of the news.
date: date of the article.
density: extractive density.
coverage: extractive coverage.
compression: compression ratio.
density_bin: low, medium, high.
coverage_bin: extractive, abstractive.
compression_bin: low, medium, high.
This dataset can be downloaded upon requests. Unzip all the contents
"train.jsonl, dev.jsonl, test.jsonl" to the tfds folder.
Manual download instructions: This dataset requires you to
download the source data manually into download_config.manual_dir
(defaults to ~/tensorflow_datasets/downloads/manual/):
You should download the dataset from https://summari.es/download/
The webpage requires registration.
After downloading, please put dev.jsonl, test.jsonl and train.jsonl
files in the manual_dir.
[[["Easy to understand","easyToUnderstand","thumb-up"],["Solved my problem","solvedMyProblem","thumb-up"],["Other","otherUp","thumb-up"]],[["Missing the information I need","missingTheInformationINeed","thumb-down"],["Too complicated / too many steps","tooComplicatedTooManySteps","thumb-down"],["Out of date","outOfDate","thumb-down"],["Samples / code issue","samplesCodeIssue","thumb-down"],["Other","otherDown","thumb-down"]],["Last updated 2022-12-14 UTC."],[],[],null,["# newsroom\n\n\u003cbr /\u003e\n\n| **Warning:** Manual download required. See instructions below.\n\n- **Description**:\n\nNEWSROOM is a large dataset for training and evaluating summarization systems.\nIt contains 1.3 million articles and summaries written by authors and editors in\nthe newsrooms of 38 major publications.\n\nDataset features includes:\n\n- text: Input news text.\n- summary: Summary for the news.\n\nAnd additional features:\n\n- title: news title.\n- url: url of the news.\n- date: date of the article.\n- density: extractive density.\n- coverage: extractive coverage.\n- compression: compression ratio.\n- density_bin: low, medium, high.\n- coverage_bin: extractive, abstractive.\n- compression_bin: low, medium, high.\n\nThis dataset can be downloaded upon requests. Unzip all the contents\n\"train.jsonl, dev.jsonl, test.jsonl\" to the tfds folder.\n\n- **Additional Documentation** :\n [Explore on Papers With Code\n north_east](https://paperswithcode.com/dataset/newsroom)\n\n- **Homepage** : \u003chttps://summari.es\u003e\n\n- **Source code** :\n [`tfds.datasets.newsroom.Builder`](https://github.com/tensorflow/datasets/tree/master/tensorflow_datasets/datasets/newsroom/newsroom_dataset_builder.py)\n\n- **Versions**:\n\n - **`1.0.0`** (default): No release notes.\n- **Download size** : `Unknown size`\n\n- **Dataset size** : `5.13 GiB`\n\n- **Manual download instructions** : This dataset requires you to\n download the source data manually into `download_config.manual_dir`\n (defaults to `~/tensorflow_datasets/downloads/manual/`): \n\n You should download the dataset from \u003chttps://summari.es/download/\u003e\n The webpage requires registration.\n After downloading, please put dev.jsonl, test.jsonl and train.jsonl\n files in the manual_dir.\n\n- **Auto-cached**\n ([documentation](https://www.tensorflow.org/datasets/performances#auto-caching)):\n No\n\n- **Splits**:\n\n| Split | Examples |\n|----------------|----------|\n| `'test'` | 108,862 |\n| `'train'` | 995,041 |\n| `'validation'` | 108,837 |\n\n- **Feature structure**:\n\n FeaturesDict({\n 'compression': float32,\n 'compression_bin': Text(shape=(), dtype=string),\n 'coverage': float32,\n 'coverage_bin': Text(shape=(), dtype=string),\n 'date': Text(shape=(), dtype=string),\n 'density': float32,\n 'density_bin': Text(shape=(), dtype=string),\n 'summary': Text(shape=(), dtype=string),\n 'text': Text(shape=(), dtype=string),\n 'title': Text(shape=(), dtype=string),\n 'url': Text(shape=(), dtype=string),\n })\n\n- **Feature documentation**:\n\n| Feature | Class | Shape | Dtype | Description |\n|-----------------|--------------|-------|---------|-------------|\n| | FeaturesDict | | | |\n| compression | Tensor | | float32 | |\n| compression_bin | Text | | string | |\n| coverage | Tensor | | float32 | |\n| coverage_bin | Text | | string | |\n| date | Text | | string | |\n| density | Tensor | | float32 | |\n| density_bin | Text | | string | |\n| summary | Text | | string | |\n| text | Text | | string | |\n| title | Text | | string | |\n| url | Text | | string | |\n\n- **Supervised keys** (See\n [`as_supervised` doc](https://www.tensorflow.org/datasets/api_docs/python/tfds/load#args)):\n `('text', 'summary')`\n\n- **Figure**\n ([tfds.show_examples](https://www.tensorflow.org/datasets/api_docs/python/tfds/visualization/show_examples)):\n Not supported.\n\n- **Examples**\n ([tfds.as_dataframe](https://www.tensorflow.org/datasets/api_docs/python/tfds/as_dataframe)):\n\nDisplay examples... \n\n- **Citation**:\n\n @article{Grusky_2018,\n title={Newsroom: A Dataset of 1.3 Million Summaries with Diverse Extractive Strategies},\n url={http://dx.doi.org/10.18653/v1/n18-1065},\n DOI={10.18653/v1/n18-1065},\n journal={Proceedings of the 2018 Conference of the North American Chapter of\n the Association for Computational Linguistics: Human Language\n Technologies, Volume 1 (Long Papers)},\n publisher={Association for Computational Linguistics},\n author={Grusky, Max and Naaman, Mor and Artzi, Yoav},\n year={2018}\n }"]]