oxford_iiit_pet
Stay organized with collections
Save and categorize content based on your preferences.
The Oxford-IIIT pet dataset is a 37 category pet image dataset with roughly 200
images for each class. The images have large variations in scale, pose and
lighting. All images have an associated ground truth annotation of breed and
species. Additionally, head bounding boxes are provided for the training split,
allowing using this dataset for simple object detection tasks. In the test
split, the bounding boxes are empty.
Split |
Examples |
'test' |
3,669 |
'train' |
3,680 |
FeaturesDict({
'file_name': Text(shape=(), dtype=string),
'head_bbox': BBoxFeature(shape=(4,), dtype=float32),
'image': Image(shape=(None, None, 3), dtype=uint8),
'label': ClassLabel(shape=(), dtype=int64, num_classes=37),
'segmentation_mask': Image(shape=(None, None, 1), dtype=uint8),
'species': ClassLabel(shape=(), dtype=int64, num_classes=2),
})
Feature |
Class |
Shape |
Dtype |
Description |
|
FeaturesDict |
|
|
|
file_name |
Text |
|
string |
|
head_bbox |
BBoxFeature |
(4,) |
float32 |
|
image |
Image |
(None, None, 3) |
uint8 |
|
label |
ClassLabel |
|
int64 |
|
segmentation_mask |
Image |
(None, None, 1) |
uint8 |
|
species |
ClassLabel |
|
int64 |
|
@InProceedings{parkhi12a,
author = "Parkhi, O. M. and Vedaldi, A. and Zisserman, A. and Jawahar, C.~V.",
title = "Cats and Dogs",
booktitle = "IEEE Conference on Computer Vision and Pattern Recognition",
year = "2012",
}
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates.
Last updated 2025-03-14 UTC.
[[["Easy to understand","easyToUnderstand","thumb-up"],["Solved my problem","solvedMyProblem","thumb-up"],["Other","otherUp","thumb-up"]],[["Missing the information I need","missingTheInformationINeed","thumb-down"],["Too complicated / too many steps","tooComplicatedTooManySteps","thumb-down"],["Out of date","outOfDate","thumb-down"],["Samples / code issue","samplesCodeIssue","thumb-down"],["Other","otherDown","thumb-down"]],["Last updated 2025-03-14 UTC."],[],[],null,["# oxford_iiit_pet\n\n\u003cbr /\u003e\n\n- **Description**:\n\nThe Oxford-IIIT pet dataset is a 37 category pet image dataset with roughly 200\nimages for each class. The images have large variations in scale, pose and\nlighting. All images have an associated ground truth annotation of breed and\nspecies. Additionally, head bounding boxes are provided for the training split,\nallowing using this dataset for simple object detection tasks. In the test\nsplit, the bounding boxes are empty.\n\n- **Additional Documentation** :\n [Explore on Papers With Code\n north_east](https://paperswithcode.com/dataset/oxford-iiit-pets)\n\n- **Homepage** :\n [http://www.robots.ox.ac.uk/\\~vgg/data/pets/](http://www.robots.ox.ac.uk/%7Evgg/data/pets/)\n\n- **Source code** :\n [`tfds.datasets.oxford_iiit_pet.Builder`](https://github.com/tensorflow/datasets/tree/master/tensorflow_datasets/datasets/oxford_iiit_pet/oxford_iiit_pet_dataset_builder.py)\n\n- **Versions**:\n\n - **`4.0.0`** (default): Add head bounding boxes. Fix corrupt images. Update dataset URL.\n- **Download size** : `773.52 MiB`\n\n- **Dataset size** : `773.68 MiB`\n\n- **Auto-cached**\n ([documentation](https://www.tensorflow.org/datasets/performances#auto-caching)):\n No\n\n- **Splits**:\n\n| Split | Examples |\n|-----------|----------|\n| `'test'` | 3,669 |\n| `'train'` | 3,680 |\n\n- **Feature structure**:\n\n FeaturesDict({\n 'file_name': Text(shape=(), dtype=string),\n 'head_bbox': BBoxFeature(shape=(4,), dtype=float32),\n 'image': Image(shape=(None, None, 3), dtype=uint8),\n 'label': ClassLabel(shape=(), dtype=int64, num_classes=37),\n 'segmentation_mask': Image(shape=(None, None, 1), dtype=uint8),\n 'species': ClassLabel(shape=(), dtype=int64, num_classes=2),\n })\n\n- **Feature documentation**:\n\n| Feature | Class | Shape | Dtype | Description |\n|-------------------|--------------|-----------------|---------|-------------|\n| | FeaturesDict | | | |\n| file_name | Text | | string | |\n| head_bbox | BBoxFeature | (4,) | float32 | |\n| image | Image | (None, None, 3) | uint8 | |\n| label | ClassLabel | | int64 | |\n| segmentation_mask | Image | (None, None, 1) | uint8 | |\n| species | ClassLabel | | int64 | |\n\n- **Supervised keys** (See\n [`as_supervised` doc](https://www.tensorflow.org/datasets/api_docs/python/tfds/load#args)):\n `('image', 'label')`\n\n- **Figure**\n ([tfds.show_examples](https://www.tensorflow.org/datasets/api_docs/python/tfds/visualization/show_examples)):\n Not supported.\n\n- **Examples**\n ([tfds.as_dataframe](https://www.tensorflow.org/datasets/api_docs/python/tfds/as_dataframe)):\n\nDisplay examples... \n\n- **Citation**:\n\n @InProceedings{parkhi12a,\n author = \"Parkhi, O. M. and Vedaldi, A. and Zisserman, A. and Jawahar, C.~V.\",\n title = \"Cats and Dogs\",\n booktitle = \"IEEE Conference on Computer Vision and Pattern Recognition\",\n year = \"2012\",\n }"]]