lvis
Stay organized with collections
Save and categorize content based on your preferences.
LVIS: A dataset for large vocabulary instance segmentation.
Split |
Examples |
'minival' |
4,809 |
'test' |
19,822 |
'train' |
100,170 |
'validation' |
19,809 |
FeaturesDict({
'image': Image(shape=(None, None, 3), dtype=uint8),
'image/id': int64,
'neg_category_ids': Sequence(ClassLabel(shape=(), dtype=int64, num_classes=1203)),
'not_exhaustive_category_ids': Sequence(ClassLabel(shape=(), dtype=int64, num_classes=1203)),
'objects': Sequence({
'area': int64,
'bbox': BBoxFeature(shape=(4,), dtype=float32),
'id': int64,
'label': ClassLabel(shape=(), dtype=int64, num_classes=1203),
'segmentation': Image(shape=(None, None, 1), dtype=uint8),
}),
})
Feature |
Class |
Shape |
Dtype |
Description |
|
FeaturesDict |
|
|
|
image |
Image |
(None, None, 3) |
uint8 |
|
image/id |
Tensor |
|
int64 |
|
neg_category_ids |
Sequence(ClassLabel) |
(None,) |
int64 |
|
not_exhaustive_category_ids |
Sequence(ClassLabel) |
(None,) |
int64 |
|
objects |
Sequence |
|
|
|
objects/area |
Tensor |
|
int64 |
|
objects/bbox |
BBoxFeature |
(4,) |
float32 |
|
objects/id |
Tensor |
|
int64 |
|
objects/label |
ClassLabel |
|
int64 |
|
objects/segmentation |
Image |
(None, None, 1) |
uint8 |
|

@inproceedings{gupta2019lvis,
title={ {LVIS}: A Dataset for Large Vocabulary Instance Segmentation},
author={Gupta, Agrim and Dollar, Piotr and Girshick, Ross},
booktitle={Proceedings of the {IEEE} Conference on Computer Vision and Pattern Recognition},
year={2019}
}
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates.
Last updated 2024-06-01 UTC.
[[["Easy to understand","easyToUnderstand","thumb-up"],["Solved my problem","solvedMyProblem","thumb-up"],["Other","otherUp","thumb-up"]],[["Missing the information I need","missingTheInformationINeed","thumb-down"],["Too complicated / too many steps","tooComplicatedTooManySteps","thumb-down"],["Out of date","outOfDate","thumb-down"],["Samples / code issue","samplesCodeIssue","thumb-down"],["Other","otherDown","thumb-down"]],["Last updated 2024-06-01 UTC."],[],[],null,["# lvis\n\n\u003cbr /\u003e\n\n- **Description**:\n\nLVIS: A dataset for large vocabulary instance segmentation.\n\n- **Additional Documentation** :\n [Explore on Papers With Code\n north_east](https://paperswithcode.com/dataset/lvis)\n\n- **Homepage** : \u003chttps://www.lvisdataset.org/\u003e\n\n- **Source code** :\n [`tfds.datasets.lvis.Builder`](https://github.com/tensorflow/datasets/tree/master/tensorflow_datasets/datasets/lvis/lvis_dataset_builder.py)\n\n- **Versions**:\n\n - `1.1.0`: Added fields `neg_category_ids` and `not_exhaustive_category_ids`.\n - `1.2.0`: Added class names.\n - **`1.3.0`** (default): Added minival split.\n- **Download size** : `25.35 GiB`\n\n- **Dataset size** : `23.04 GiB`\n\n- **Auto-cached**\n ([documentation](https://www.tensorflow.org/datasets/performances#auto-caching)):\n No\n\n- **Splits**:\n\n| Split | Examples |\n|----------------|----------|\n| `'minival'` | 4,809 |\n| `'test'` | 19,822 |\n| `'train'` | 100,170 |\n| `'validation'` | 19,809 |\n\n- **Feature structure**:\n\n FeaturesDict({\n 'image': Image(shape=(None, None, 3), dtype=uint8),\n 'image/id': int64,\n 'neg_category_ids': Sequence(ClassLabel(shape=(), dtype=int64, num_classes=1203)),\n 'not_exhaustive_category_ids': Sequence(ClassLabel(shape=(), dtype=int64, num_classes=1203)),\n 'objects': Sequence({\n 'area': int64,\n 'bbox': BBoxFeature(shape=(4,), dtype=float32),\n 'id': int64,\n 'label': ClassLabel(shape=(), dtype=int64, num_classes=1203),\n 'segmentation': Image(shape=(None, None, 1), dtype=uint8),\n }),\n })\n\n- **Feature documentation**:\n\n| Feature | Class | Shape | Dtype | Description |\n|-----------------------------|----------------------|-----------------|---------|-------------|\n| | FeaturesDict | | | |\n| image | Image | (None, None, 3) | uint8 | |\n| image/id | Tensor | | int64 | |\n| neg_category_ids | Sequence(ClassLabel) | (None,) | int64 | |\n| not_exhaustive_category_ids | Sequence(ClassLabel) | (None,) | int64 | |\n| objects | Sequence | | | |\n| objects/area | Tensor | | int64 | |\n| objects/bbox | BBoxFeature | (4,) | float32 | |\n| objects/id | Tensor | | int64 | |\n| objects/label | ClassLabel | | int64 | |\n| objects/segmentation | Image | (None, None, 1) | uint8 | |\n\n- **Supervised keys** (See\n [`as_supervised` doc](https://www.tensorflow.org/datasets/api_docs/python/tfds/load#args)):\n `None`\n\n- **Figure**\n ([tfds.show_examples](https://www.tensorflow.org/datasets/api_docs/python/tfds/visualization/show_examples)):\n\n- **Examples** ([tfds.as_dataframe](https://www.tensorflow.org/datasets/api_docs/python/tfds/as_dataframe)):\n\nDisplay examples... \n\n- **Citation**:\n\n @inproceedings{gupta2019lvis,\n title={ {LVIS}: A Dataset for Large Vocabulary Instance Segmentation},\n author={Gupta, Agrim and Dollar, Piotr and Girshick, Ross},\n booktitle={Proceedings of the {IEEE} Conference on Computer Vision and Pattern Recognition},\n year={2019}\n }"]]