- Deskripsi :
Korpus ini berisi postingan yang telah diproses sebelumnya dari kumpulan data Reddit. Dataset terdiri dari 3.848.330 postingan dengan panjang rata-rata 270 kata untuk konten, dan 28 kata untuk ringkasan.
Fitur termasuk string: penulis, badan, badan normal, konten, ringkasan, subreddit, subreddit_id. Konten digunakan sebagai dokumen dan ringkasan digunakan sebagai ringkasan.
Dokumentasi Tambahan : Jelajahi di Makalah Dengan Kode
Kode sumber :
tfds.datasets.reddit.BuilderVersi :
-
1.0.0(default): Tidak ada catatan rilis.
-
Ukuran unduhan :
2.93 GiBUkuran dataset :
18.09 GiBDi-cache otomatis ( dokumentasi ): Tidak
Perpecahan :
| Membelah | Contoh |
|---|---|
'train' | 3.848.330 |
- Struktur fitur :
FeaturesDict({
'author': string,
'body': string,
'content': string,
'id': string,
'normalizedBody': string,
'subreddit': string,
'subreddit_id': string,
'summary': string,
})
- Dokumentasi fitur :
| Fitur | Kelas | Membentuk | Dtype | Keterangan |
|---|---|---|---|---|
| fiturDict | ||||
| pengarang | Tensor | rangkaian | ||
| tubuh | Tensor | rangkaian | ||
| isi | Tensor | rangkaian | ||
| Indo | Tensor | rangkaian | ||
| normalizedBody | Tensor | rangkaian | ||
| subreddit | Tensor | rangkaian | ||
| subreddit_id | Tensor | rangkaian | ||
| ringkasan | Tensor | rangkaian |
Kunci yang diawasi (Lihat
as_superviseddoc ):('content', 'summary')Gambar ( tfds.show_examples ): Tidak didukung.
Contoh ( tfds.as_dataframe ):
- Kutipan :
@inproceedings{volske-etal-2017-tl,
title = "{TL};{DR}: Mining {R}eddit to Learn Automatic Summarization",
author = {V{\"o}lske, Michael and
Potthast, Martin and
Syed, Shahbaz and
Stein, Benno},
booktitle = "Proceedings of the Workshop on New Frontiers in Summarization",
month = sep,
year = "2017",
address = "Copenhagen, Denmark",
publisher = "Association for Computational Linguistics",
url = "https://www.aclweb.org/anthology/W17-4508",
doi = "10.18653/v1/W17-4508",
pages = "59--63",
abstract = "Recent advances in automatic text summarization have used deep neural networks to generate high-quality abstractive summaries, but the performance of these models strongly depends on large amounts of suitable training data. We propose a new method for mining social media for author-provided summaries, taking advantage of the common practice of appending a {``}TL;DR{''} to long posts. A case study using a large Reddit crawl yields the Webis-TLDR-17 dataset, complementing existing corpora primarily from the news genre. Our technique is likely applicable to other social media sites and general web crawls.",
}