- Keterangan :
D4RL adalah tolok ukur sumber terbuka untuk pembelajaran penguatan offline. Ini menyediakan lingkungan dan kumpulan data standar untuk pelatihan dan algoritma benchmarking.
Kumpulan data mengikuti format RLDS untuk mewakili langkah dan episode.
Deskripsi konfigurasi : Lihat detail selengkapnya tentang tugas dan versinya di https://github.com/rail-berkeley/d4rl/wiki/Tasks#gym
Kode sumber :
tfds.d4rl.d4rl_mujoco_hopper.D4rlMujocoHopperVersi :
-
1.0.0: Rilis awal. -
1.1.0: Ditambahkan is_last. -
1.2.0(default): Diperbarui untuk memperhitungkan observasi berikutnya.
-
Kunci yang diawasi (Lihat dokumen
as_supervised):NoneGambar ( tfds.show_examples ): Tidak didukung.
Kutipan :
@misc{fu2020d4rl,
title={D4RL: Datasets for Deep Data-Driven Reinforcement Learning},
author={Justin Fu and Aviral Kumar and Ofir Nachum and George Tucker and Sergey Levine},
year={2020},
eprint={2004.07219},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
d4rl_mujoco_hopper/v0-expert (konfigurasi default)
Ukuran unduhan :
51.56 MiBUkuran kumpulan data :
64.10 MiBCache otomatis ( dokumentasi ): Ya
Perpecahan :
| Membelah | Contoh |
|---|---|
'train' | 1.029 |
- Struktur fitur :
FeaturesDict({
'steps': Dataset({
'action': Tensor(shape=(3,), dtype=float32),
'discount': float32,
'is_first': bool,
'is_last': bool,
'is_terminal': bool,
'observation': Tensor(shape=(11,), dtype=float32),
'reward': float32,
}),
})
- Dokumentasi fitur :
| Fitur | Kelas | Membentuk | Tipe D | Keterangan |
|---|---|---|---|---|
| FiturDict | ||||
| Langkah | Himpunan data | |||
| langkah/tindakan | Tensor | (3,) | float32 | |
| langkah/diskon | Tensor | float32 | ||
| langkah/adalah_pertama | Tensor | bodoh | ||
| langkah/adalah_terakhir | Tensor | bodoh | ||
| langkah/is_terminal | Tensor | bodoh | ||
| langkah/pengamatan | Tensor | (11,) | float32 | |
| langkah/hadiah | Tensor | float32 |
- Contoh ( tfds.as_dataframe ):
d4rl_mujoco_hopper/v0-medium
Ukuran unduhan :
51.74 MiBUkuran kumpulan data :
64.68 MiBCache otomatis ( dokumentasi ): Ya
Perpecahan :
| Membelah | Contoh |
|---|---|
'train' | 3.064 |
- Struktur fitur :
FeaturesDict({
'steps': Dataset({
'action': Tensor(shape=(3,), dtype=float32),
'discount': float32,
'is_first': bool,
'is_last': bool,
'is_terminal': bool,
'observation': Tensor(shape=(11,), dtype=float32),
'reward': float32,
}),
})
- Dokumentasi fitur :
| Fitur | Kelas | Membentuk | Tipe D | Keterangan |
|---|---|---|---|---|
| FiturDict | ||||
| Langkah | Himpunan data | |||
| langkah/tindakan | Tensor | (3,) | float32 | |
| langkah/diskon | Tensor | float32 | ||
| langkah/adalah_pertama | Tensor | bodoh | ||
| langkah/adalah_terakhir | Tensor | bodoh | ||
| langkah/is_terminal | Tensor | bodoh | ||
| langkah/pengamatan | Tensor | (11,) | float32 | |
| langkah/hadiah | Tensor | float32 |
- Contoh ( tfds.as_dataframe ):
d4rl_mujoco_hopper/v0-medium-expert
Ukuran unduhan :
62.01 MiBUkuran kumpulan data :
77.25 MiBCache otomatis ( dokumentasi ): Ya
Perpecahan :
| Membelah | Contoh |
|---|---|
'train' | 2.277 |
- Struktur fitur :
FeaturesDict({
'steps': Dataset({
'action': Tensor(shape=(3,), dtype=float32),
'discount': float32,
'is_first': bool,
'is_last': bool,
'is_terminal': bool,
'observation': Tensor(shape=(11,), dtype=float32),
'reward': float32,
}),
})
- Dokumentasi fitur :
| Fitur | Kelas | Membentuk | Tipe D | Keterangan |
|---|---|---|---|---|
| FiturDict | ||||
| Langkah | Himpunan data | |||
| langkah/tindakan | Tensor | (3,) | float32 | |
| langkah/diskon | Tensor | float32 | ||
| langkah/adalah_pertama | Tensor | bodoh | ||
| langkah/adalah_terakhir | Tensor | bodoh | ||
| langkah/is_terminal | Tensor | bodoh | ||
| langkah/pengamatan | Tensor | (11,) | float32 | |
| langkah/hadiah | Tensor | float32 |
- Contoh ( tfds.as_dataframe ):
d4rl_mujoco_hopper/v0-campuran
Ukuran unduhan :
10.48 MiBUkuran kumpulan data :
13.15 MiBCache otomatis ( dokumentasi ): Ya
Perpecahan :
| Membelah | Contoh |
|---|---|
'train' | 1.250 |
- Struktur fitur :
FeaturesDict({
'steps': Dataset({
'action': Tensor(shape=(3,), dtype=float32),
'discount': float32,
'is_first': bool,
'is_last': bool,
'is_terminal': bool,
'observation': Tensor(shape=(11,), dtype=float32),
'reward': float32,
}),
})
- Dokumentasi fitur :
| Fitur | Kelas | Membentuk | Tipe D | Keterangan |
|---|---|---|---|---|
| FiturDict | ||||
| Langkah | Himpunan data | |||
| langkah/tindakan | Tensor | (3,) | float32 | |
| langkah/diskon | Tensor | float32 | ||
| langkah/adalah_pertama | Tensor | bodoh | ||
| langkah/adalah_terakhir | Tensor | bodoh | ||
| langkah/is_terminal | Tensor | bodoh | ||
| langkah/pengamatan | Tensor | (11,) | float32 | |
| langkah/hadiah | Tensor | float32 |
- Contoh ( tfds.as_dataframe ):
d4rl_mujoco_hopper/v0-random
Ukuran unduhan :
51.83 MiBUkuran kumpulan data :
66.06 MiBCache otomatis ( dokumentasi ): Ya
Perpecahan :
| Membelah | Contoh |
|---|---|
'train' | 8.793 |
- Struktur fitur :
FeaturesDict({
'steps': Dataset({
'action': Tensor(shape=(3,), dtype=float32),
'discount': float32,
'is_first': bool,
'is_last': bool,
'is_terminal': bool,
'observation': Tensor(shape=(11,), dtype=float32),
'reward': float32,
}),
})
- Dokumentasi fitur :
| Fitur | Kelas | Membentuk | Tipe D | Keterangan |
|---|---|---|---|---|
| FiturDict | ||||
| Langkah | Himpunan data | |||
| langkah/tindakan | Tensor | (3,) | float32 | |
| langkah/diskon | Tensor | float32 | ||
| langkah/adalah_pertama | Tensor | bodoh | ||
| langkah/adalah_terakhir | Tensor | bodoh | ||
| langkah/is_terminal | Tensor | bodoh | ||
| langkah/pengamatan | Tensor | (11,) | float32 | |
| langkah/hadiah | Tensor | float32 |
- Contoh ( tfds.as_dataframe ):
d4rl_mujoco_hopper/v1-expert
Ukuran unduhan :
93.19 MiBUkuran kumpulan data :
608.03 MiBCache otomatis ( dokumentasi ): Tidak
Perpecahan :
| Membelah | Contoh |
|---|---|
'train' | 1.836 |
- Struktur fitur :
FeaturesDict({
'algorithm': string,
'iteration': int32,
'policy': FeaturesDict({
'fc0': FeaturesDict({
'bias': Tensor(shape=(256,), dtype=float32),
'weight': Tensor(shape=(256, 11), dtype=float32),
}),
'fc1': FeaturesDict({
'bias': Tensor(shape=(256,), dtype=float32),
'weight': Tensor(shape=(256, 256), dtype=float32),
}),
'last_fc': FeaturesDict({
'bias': Tensor(shape=(3,), dtype=float32),
'weight': Tensor(shape=(3, 256), dtype=float32),
}),
'last_fc_log_std': FeaturesDict({
'bias': Tensor(shape=(3,), dtype=float32),
'weight': Tensor(shape=(3, 256), dtype=float32),
}),
'nonlinearity': string,
'output_distribution': string,
}),
'steps': Dataset({
'action': Tensor(shape=(3,), dtype=float32),
'discount': float32,
'infos': FeaturesDict({
'action_log_probs': float32,
'qpos': Tensor(shape=(6,), dtype=float32),
'qvel': Tensor(shape=(6,), dtype=float32),
}),
'is_first': bool,
'is_last': bool,
'is_terminal': bool,
'observation': Tensor(shape=(11,), dtype=float32),
'reward': float32,
}),
})
- Dokumentasi fitur :
| Fitur | Kelas | Membentuk | Tipe D | Keterangan |
|---|---|---|---|---|
| FiturDict | ||||
| algoritma | Tensor | rangkaian | ||
| pengulangan | Tensor | int32 | ||
| kebijakan | FiturDict | |||
| kebijakan/fc0 | FiturDict | |||
| kebijakan/fc0/bias | Tensor | (256,) | float32 | |
| kebijakan/fc0/bobot | Tensor | (256, 11) | float32 | |
| kebijakan/fc1 | FiturDict | |||
| kebijakan/fc1/bias | Tensor | (256,) | float32 | |
| kebijakan/fc1/bobot | Tensor | (256, 256) | float32 | |
| kebijakan/last_fc | FiturDict | |||
| kebijakan/last_fc/bias | Tensor | (3,) | float32 | |
| policy/last_fc/weight | Tensor | (3, 256) | float32 | |
| kebijakan/last_fc_log_std | FiturDict | |||
| kebijakan/last_fc_log_std/bias | Tensor | (3,) | float32 | |
| policy/last_fc_log_std/weight | Tensor | (3, 256) | float32 | |
| kebijakan/nonlinier | Tensor | rangkaian | ||
| kebijakan/output_distribusi | Tensor | rangkaian | ||
| Langkah | Himpunan data | |||
| langkah/tindakan | Tensor | (3,) | float32 | |
| langkah/diskon | Tensor | float32 | ||
| langkah/info | FiturDict | |||
| langkah/info/action_log_probs | Tensor | float32 | ||
| langkah/info/qpos | Tensor | (6,) | float32 | |
| langkah/info/qvel | Tensor | (6,) | float32 | |
| langkah/adalah_pertama | Tensor | bodoh | ||
| langkah/adalah_terakhir | Tensor | bodoh | ||
| langkah/is_terminal | Tensor | bodoh | ||
| langkah/pengamatan | Tensor | (11,) | float32 | |
| langkah/hadiah | Tensor | float32 |
- Contoh ( tfds.as_dataframe ):
d4rl_mujoco_hopper/v1-medium
Ukuran unduhan :
92.03 MiBUkuran kumpulan data :
1.78 GiBCache otomatis ( dokumentasi ): Tidak
Perpecahan :
| Membelah | Contoh |
|---|---|
'train' | 6.328 |
- Struktur fitur :
FeaturesDict({
'algorithm': string,
'iteration': int32,
'policy': FeaturesDict({
'fc0': FeaturesDict({
'bias': Tensor(shape=(256,), dtype=float32),
'weight': Tensor(shape=(256, 11), dtype=float32),
}),
'fc1': FeaturesDict({
'bias': Tensor(shape=(256,), dtype=float32),
'weight': Tensor(shape=(256, 256), dtype=float32),
}),
'last_fc': FeaturesDict({
'bias': Tensor(shape=(3,), dtype=float32),
'weight': Tensor(shape=(3, 256), dtype=float32),
}),
'last_fc_log_std': FeaturesDict({
'bias': Tensor(shape=(3,), dtype=float32),
'weight': Tensor(shape=(3, 256), dtype=float32),
}),
'nonlinearity': string,
'output_distribution': string,
}),
'steps': Dataset({
'action': Tensor(shape=(3,), dtype=float32),
'discount': float32,
'infos': FeaturesDict({
'action_log_probs': float32,
'qpos': Tensor(shape=(6,), dtype=float32),
'qvel': Tensor(shape=(6,), dtype=float32),
}),
'is_first': bool,
'is_last': bool,
'is_terminal': bool,
'observation': Tensor(shape=(11,), dtype=float32),
'reward': float32,
}),
})
- Dokumentasi fitur :
| Fitur | Kelas | Membentuk | Tipe D | Keterangan |
|---|---|---|---|---|
| FiturDict | ||||
| algoritma | Tensor | rangkaian | ||
| pengulangan | Tensor | int32 | ||
| kebijakan | FiturDict | |||
| kebijakan/fc0 | FiturDict | |||
| kebijakan/fc0/bias | Tensor | (256,) | float32 | |
| kebijakan/fc0/bobot | Tensor | (256, 11) | float32 | |
| kebijakan/fc1 | FiturDict | |||
| kebijakan/fc1/bias | Tensor | (256,) | float32 | |
| kebijakan/fc1/bobot | Tensor | (256, 256) | float32 | |
| kebijakan/last_fc | FiturDict | |||
| kebijakan/last_fc/bias | Tensor | (3,) | float32 | |
| policy/last_fc/weight | Tensor | (3, 256) | float32 | |
| kebijakan/last_fc_log_std | FiturDict | |||
| kebijakan/last_fc_log_std/bias | Tensor | (3,) | float32 | |
| policy/last_fc_log_std/weight | Tensor | (3, 256) | float32 | |
| kebijakan/nonlinier | Tensor | rangkaian | ||
| kebijakan/output_distribusi | Tensor | rangkaian | ||
| Langkah | Himpunan data | |||
| langkah/tindakan | Tensor | (3,) | float32 | |
| langkah/diskon | Tensor | float32 | ||
| langkah/info | FiturDict | |||
| langkah/info/action_log_probs | Tensor | float32 | ||
| langkah/info/qpos | Tensor | (6,) | float32 | |
| langkah/info/qvel | Tensor | (6,) | float32 | |
| langkah/adalah_pertama | Tensor | bodoh | ||
| langkah/adalah_terakhir | Tensor | bodoh | ||
| langkah/is_terminal | Tensor | bodoh | ||
| langkah/pengamatan | Tensor | (11,) | float32 | |
| langkah/hadiah | Tensor | float32 |
- Contoh ( tfds.as_dataframe ):
d4rl_mujoco_hopper/v1-medium-expert
Ukuran unduhan :
184.59 MiBUkuran kumpulan data :
230.24 MiBCache otomatis ( dokumentasi ): Hanya ketika
shuffle_files=False(kereta)Perpecahan :
| Membelah | Contoh |
|---|---|
'train' | 8.163 |
- Struktur fitur :
FeaturesDict({
'steps': Dataset({
'action': Tensor(shape=(3,), dtype=float32),
'discount': float32,
'infos': FeaturesDict({
'action_log_probs': float32,
'qpos': Tensor(shape=(6,), dtype=float32),
'qvel': Tensor(shape=(6,), dtype=float32),
}),
'is_first': bool,
'is_last': bool,
'is_terminal': bool,
'observation': Tensor(shape=(11,), dtype=float32),
'reward': float32,
}),
})
- Dokumentasi fitur :
| Fitur | Kelas | Membentuk | Tipe D | Keterangan |
|---|---|---|---|---|
| FiturDict | ||||
| Langkah | Himpunan data | |||
| langkah/tindakan | Tensor | (3,) | float32 | |
| langkah/diskon | Tensor | float32 | ||
| langkah/info | FiturDict | |||
| langkah/info/action_log_probs | Tensor | float32 | ||
| langkah/info/qpos | Tensor | (6,) | float32 | |
| langkah/info/qvel | Tensor | (6,) | float32 | |
| langkah/adalah_pertama | Tensor | bodoh | ||
| langkah/adalah_terakhir | Tensor | bodoh | ||
| langkah/is_terminal | Tensor | bodoh | ||
| langkah/pengamatan | Tensor | (11,) | float32 | |
| langkah/hadiah | Tensor | float32 |
- Contoh ( tfds.as_dataframe ):
d4rl_mujoco_hopper/v1-medium-replay
Ukuran unduhan :
55.65 MiBUkuran kumpulan data :
34.78 MiBCache otomatis ( dokumentasi ): Ya
Perpecahan :
| Membelah | Contoh |
|---|---|
'train' | 1.151 |
- Struktur fitur :
FeaturesDict({
'algorithm': string,
'iteration': int32,
'steps': Dataset({
'action': Tensor(shape=(3,), dtype=float64),
'discount': float64,
'infos': FeaturesDict({
'action_log_probs': float64,
'qpos': Tensor(shape=(6,), dtype=float64),
'qvel': Tensor(shape=(6,), dtype=float64),
}),
'is_first': bool,
'is_last': bool,
'is_terminal': bool,
'observation': Tensor(shape=(11,), dtype=float64),
'reward': float64,
}),
})
- Dokumentasi fitur :
| Fitur | Kelas | Membentuk | Tipe D | Keterangan |
|---|---|---|---|---|
| FiturDict | ||||
| algoritma | Tensor | rangkaian | ||
| pengulangan | Tensor | int32 | ||
| Langkah | Himpunan data | |||
| langkah/tindakan | Tensor | (3,) | float64 | |
| langkah/diskon | Tensor | float64 | ||
| langkah/info | FiturDict | |||
| langkah/info/action_log_probs | Tensor | float64 | ||
| langkah/info/qpos | Tensor | (6,) | float64 | |
| langkah/info/qvel | Tensor | (6,) | float64 | |
| langkah/adalah_pertama | Tensor | bodoh | ||
| langkah/adalah_terakhir | Tensor | bodoh | ||
| langkah/is_terminal | Tensor | bodoh | ||
| langkah/pengamatan | Tensor | (11,) | float64 | |
| langkah/hadiah | Tensor | float64 |
- Contoh ( tfds.as_dataframe ):
d4rl_mujoco_hopper/v1-putar ulang penuh
Ukuran unduhan :
183.32 MiBUkuran kumpulan data :
114.78 MiBCache otomatis ( dokumentasi ): Ya
Perpecahan :
| Membelah | Contoh |
|---|---|
'train' | 2.907 |
- Struktur fitur :
FeaturesDict({
'algorithm': string,
'iteration': int32,
'steps': Dataset({
'action': Tensor(shape=(3,), dtype=float64),
'discount': float64,
'infos': FeaturesDict({
'action_log_probs': float64,
'qpos': Tensor(shape=(6,), dtype=float64),
'qvel': Tensor(shape=(6,), dtype=float64),
}),
'is_first': bool,
'is_last': bool,
'is_terminal': bool,
'observation': Tensor(shape=(11,), dtype=float64),
'reward': float64,
}),
})
- Dokumentasi fitur :
| Fitur | Kelas | Membentuk | Tipe D | Keterangan |
|---|---|---|---|---|
| FiturDict | ||||
| algoritma | Tensor | rangkaian | ||
| pengulangan | Tensor | int32 | ||
| Langkah | Himpunan data | |||
| langkah/tindakan | Tensor | (3,) | float64 | |
| langkah/diskon | Tensor | float64 | ||
| langkah/info | FiturDict | |||
| langkah/info/action_log_probs | Tensor | float64 | ||
| langkah/info/qpos | Tensor | (6,) | float64 | |
| langkah/info/qvel | Tensor | (6,) | float64 | |
| langkah/adalah_pertama | Tensor | bodoh | ||
| langkah/adalah_terakhir | Tensor | bodoh | ||
| langkah/is_terminal | Tensor | bodoh | ||
| langkah/pengamatan | Tensor | (11,) | float64 | |
| langkah/hadiah | Tensor | float64 |
- Contoh ( tfds.as_dataframe ):
d4rl_mujoco_hopper/v1-random
Ukuran unduhan :
91.11 MiBUkuran kumpulan data :
130.73 MiBCache otomatis ( dokumentasi ): Hanya ketika
shuffle_files=False(kereta)Perpecahan :
| Membelah | Contoh |
|---|---|
'train' | 45.265 |
- Struktur fitur :
FeaturesDict({
'steps': Dataset({
'action': Tensor(shape=(3,), dtype=float32),
'discount': float32,
'infos': FeaturesDict({
'action_log_probs': float32,
'qpos': Tensor(shape=(6,), dtype=float32),
'qvel': Tensor(shape=(6,), dtype=float32),
}),
'is_first': bool,
'is_last': bool,
'is_terminal': bool,
'observation': Tensor(shape=(11,), dtype=float32),
'reward': float32,
}),
})
- Dokumentasi fitur :
| Fitur | Kelas | Membentuk | Tipe D | Keterangan |
|---|---|---|---|---|
| FiturDict | ||||
| Langkah | Himpunan data | |||
| langkah/tindakan | Tensor | (3,) | float32 | |
| langkah/diskon | Tensor | float32 | ||
| langkah/info | FiturDict | |||
| langkah/info/action_log_probs | Tensor | float32 | ||
| langkah/info/qpos | Tensor | (6,) | float32 | |
| langkah/info/qvel | Tensor | (6,) | float32 | |
| langkah/adalah_pertama | Tensor | bodoh | ||
| langkah/adalah_terakhir | Tensor | bodoh | ||
| langkah/is_terminal | Tensor | bodoh | ||
| langkah/pengamatan | Tensor | (11,) | float32 | |
| langkah/hadiah | Tensor | float32 |
- Contoh ( tfds.as_dataframe ):
d4rl_mujoco_hopper/v2-expert
Ukuran unduhan :
145.37 MiBUkuran kumpulan data :
390.40 MiBCache otomatis ( dokumentasi ): Tidak
Perpecahan :
| Membelah | Contoh |
|---|---|
'train' | 1.028 |
- Struktur fitur :
FeaturesDict({
'algorithm': string,
'iteration': int32,
'policy': FeaturesDict({
'fc0': FeaturesDict({
'bias': Tensor(shape=(256,), dtype=float32),
'weight': Tensor(shape=(256, 11), dtype=float32),
}),
'fc1': FeaturesDict({
'bias': Tensor(shape=(256,), dtype=float32),
'weight': Tensor(shape=(256, 256), dtype=float32),
}),
'last_fc': FeaturesDict({
'bias': Tensor(shape=(3,), dtype=float32),
'weight': Tensor(shape=(3, 256), dtype=float32),
}),
'last_fc_log_std': FeaturesDict({
'bias': Tensor(shape=(3,), dtype=float32),
'weight': Tensor(shape=(3, 256), dtype=float32),
}),
'nonlinearity': string,
'output_distribution': string,
}),
'steps': Dataset({
'action': Tensor(shape=(3,), dtype=float32),
'discount': float32,
'infos': FeaturesDict({
'action_log_probs': float64,
'qpos': Tensor(shape=(6,), dtype=float64),
'qvel': Tensor(shape=(6,), dtype=float64),
}),
'is_first': bool,
'is_last': bool,
'is_terminal': bool,
'observation': Tensor(shape=(11,), dtype=float32),
'reward': float32,
}),
})
- Dokumentasi fitur :
| Fitur | Kelas | Membentuk | Tipe D | Keterangan |
|---|---|---|---|---|
| FiturDict | ||||
| algoritma | Tensor | rangkaian | ||
| pengulangan | Tensor | int32 | ||
| kebijakan | FiturDict | |||
| kebijakan/fc0 | FiturDict | |||
| kebijakan/fc0/bias | Tensor | (256,) | float32 | |
| kebijakan/fc0/bobot | Tensor | (256, 11) | float32 | |
| kebijakan/fc1 | FiturDict | |||
| kebijakan/fc1/bias | Tensor | (256,) | float32 | |
| kebijakan/fc1/bobot | Tensor | (256, 256) | float32 | |
| kebijakan/last_fc | FiturDict | |||
| kebijakan/last_fc/bias | Tensor | (3,) | float32 | |
| policy/last_fc/weight | Tensor | (3, 256) | float32 | |
| kebijakan/last_fc_log_std | FiturDict | |||
| kebijakan/last_fc_log_std/bias | Tensor | (3,) | float32 | |
| policy/last_fc_log_std/weight | Tensor | (3, 256) | float32 | |
| kebijakan/nonlinier | Tensor | rangkaian | ||
| kebijakan/output_distribusi | Tensor | rangkaian | ||
| Langkah | Himpunan data | |||
| langkah/tindakan | Tensor | (3,) | float32 | |
| langkah/diskon | Tensor | float32 | ||
| langkah/info | FiturDict | |||
| langkah/info/action_log_probs | Tensor | float64 | ||
| langkah/info/qpos | Tensor | (6,) | float64 | |
| langkah/info/qvel | Tensor | (6,) | float64 | |
| langkah/adalah_pertama | Tensor | bodoh | ||
| langkah/adalah_terakhir | Tensor | bodoh | ||
| langkah/is_terminal | Tensor | bodoh | ||
| langkah/pengamatan | Tensor | (11,) | float32 | |
| langkah/hadiah | Tensor | float32 |
- Contoh ( tfds.as_dataframe ):
d4rl_mujoco_hopper/v2-putar ulang penuh
Ukuran unduhan :
179.29 MiBUkuran kumpulan data :
115.04 MiBCache otomatis ( dokumentasi ): Ya
Perpecahan :
| Membelah | Contoh |
|---|---|
'train' | 3.515 |
- Struktur fitur :
FeaturesDict({
'algorithm': string,
'iteration': int32,
'steps': Dataset({
'action': Tensor(shape=(3,), dtype=float32),
'discount': float32,
'infos': FeaturesDict({
'action_log_probs': float64,
'qpos': Tensor(shape=(6,), dtype=float64),
'qvel': Tensor(shape=(6,), dtype=float64),
}),
'is_first': bool,
'is_last': bool,
'is_terminal': bool,
'observation': Tensor(shape=(11,), dtype=float32),
'reward': float32,
}),
})
- Dokumentasi fitur :
| Fitur | Kelas | Membentuk | Tipe D | Keterangan |
|---|---|---|---|---|
| FiturDict | ||||
| algoritma | Tensor | rangkaian | ||
| pengulangan | Tensor | int32 | ||
| Langkah | Himpunan data | |||
| langkah/tindakan | Tensor | (3,) | float32 | |
| langkah/diskon | Tensor | float32 | ||
| langkah/info | FiturDict | |||
| langkah/info/action_log_probs | Tensor | float64 | ||
| langkah/info/qpos | Tensor | (6,) | float64 | |
| langkah/info/qvel | Tensor | (6,) | float64 | |
| langkah/adalah_pertama | Tensor | bodoh | ||
| langkah/adalah_terakhir | Tensor | bodoh | ||
| langkah/is_terminal | Tensor | bodoh | ||
| langkah/pengamatan | Tensor | (11,) | float32 | |
| langkah/hadiah | Tensor | float32 |
- Contoh ( tfds.as_dataframe ):
d4rl_mujoco_hopper/v2-medium
Ukuran unduhan :
145.68 MiBUkuran kumpulan data :
702.57 MiBCache otomatis ( dokumentasi ): Tidak
Perpecahan :
| Membelah | Contoh |
|---|---|
'train' | 2.187 |
- Struktur fitur :
FeaturesDict({
'algorithm': string,
'iteration': int32,
'policy': FeaturesDict({
'fc0': FeaturesDict({
'bias': Tensor(shape=(256,), dtype=float32),
'weight': Tensor(shape=(256, 11), dtype=float32),
}),
'fc1': FeaturesDict({
'bias': Tensor(shape=(256,), dtype=float32),
'weight': Tensor(shape=(256, 256), dtype=float32),
}),
'last_fc': FeaturesDict({
'bias': Tensor(shape=(3,), dtype=float32),
'weight': Tensor(shape=(3, 256), dtype=float32),
}),
'last_fc_log_std': FeaturesDict({
'bias': Tensor(shape=(3,), dtype=float32),
'weight': Tensor(shape=(3, 256), dtype=float32),
}),
'nonlinearity': string,
'output_distribution': string,
}),
'steps': Dataset({
'action': Tensor(shape=(3,), dtype=float32),
'discount': float32,
'infos': FeaturesDict({
'action_log_probs': float64,
'qpos': Tensor(shape=(6,), dtype=float64),
'qvel': Tensor(shape=(6,), dtype=float64),
}),
'is_first': bool,
'is_last': bool,
'is_terminal': bool,
'observation': Tensor(shape=(11,), dtype=float32),
'reward': float32,
}),
})
- Dokumentasi fitur :
| Fitur | Kelas | Membentuk | Tipe D | Keterangan |
|---|---|---|---|---|
| FiturDict | ||||
| algoritma | Tensor | rangkaian | ||
| pengulangan | Tensor | int32 | ||
| kebijakan | FiturDict | |||
| kebijakan/fc0 | FiturDict | |||
| kebijakan/fc0/bias | Tensor | (256,) | float32 | |
| kebijakan/fc0/bobot | Tensor | (256, 11) | float32 | |
| kebijakan/fc1 | FiturDict | |||
| kebijakan/fc1/bias | Tensor | (256,) | float32 | |
| kebijakan/fc1/bobot | Tensor | (256, 256) | float32 | |
| kebijakan/last_fc | FiturDict | |||
| kebijakan/last_fc/bias | Tensor | (3,) | float32 | |
| policy/last_fc/weight | Tensor | (3, 256) | float32 | |
| kebijakan/last_fc_log_std | FiturDict | |||
| kebijakan/last_fc_log_std/bias | Tensor | (3,) | float32 | |
| policy/last_fc_log_std/weight | Tensor | (3, 256) | float32 | |
| kebijakan/nonlinier | Tensor | rangkaian | ||
| kebijakan/output_distribusi | Tensor | rangkaian | ||
| Langkah | Himpunan data | |||
| langkah/tindakan | Tensor | (3,) | float32 | |
| langkah/diskon | Tensor | float32 | ||
| langkah/info | FiturDict | |||
| langkah/info/action_log_probs | Tensor | float64 | ||
| langkah/info/qpos | Tensor | (6,) | float64 | |
| langkah/info/qvel | Tensor | (6,) | float64 | |
| langkah/adalah_pertama | Tensor | bodoh | ||
| langkah/adalah_terakhir | Tensor | bodoh | ||
| langkah/is_terminal | Tensor | bodoh | ||
| langkah/pengamatan | Tensor | (11,) | float32 | |
| langkah/hadiah | Tensor | float32 |
- Contoh ( tfds.as_dataframe ):
d4rl_mujoco_hopper/v2-medium-expert
Ukuran unduhan :
290.43 MiBUkuran kumpulan data :
228.28 MiBCache otomatis ( dokumentasi ): Hanya ketika
shuffle_files=False(kereta)Perpecahan :
| Membelah | Contoh |
|---|---|
'train' | 3.214 |
- Struktur fitur :
FeaturesDict({
'steps': Dataset({
'action': Tensor(shape=(3,), dtype=float32),
'discount': float32,
'infos': FeaturesDict({
'action_log_probs': float64,
'qpos': Tensor(shape=(6,), dtype=float64),
'qvel': Tensor(shape=(6,), dtype=float64),
}),
'is_first': bool,
'is_last': bool,
'is_terminal': bool,
'observation': Tensor(shape=(11,), dtype=float32),
'reward': float32,
}),
})
- Dokumentasi fitur :
| Fitur | Kelas | Membentuk | Tipe D | Keterangan |
|---|---|---|---|---|
| FiturDict | ||||
| Langkah | Himpunan data | |||
| langkah/tindakan | Tensor | (3,) | float32 | |
| langkah/diskon | Tensor | float32 | ||
| langkah/info | FiturDict | |||
| langkah/info/action_log_probs | Tensor | float64 | ||
| langkah/info/qpos | Tensor | (6,) | float64 | |
| langkah/info/qvel | Tensor | (6,) | float64 | |
| langkah/adalah_pertama | Tensor | bodoh | ||
| langkah/adalah_terakhir | Tensor | bodoh | ||
| langkah/is_terminal | Tensor | bodoh | ||
| langkah/pengamatan | Tensor | (11,) | float32 | |
| langkah/hadiah | Tensor | float32 |
- Contoh ( tfds.as_dataframe ):
d4rl_mujoco_hopper/v2-medium-replay
Ukuran unduhan :
72.34 MiBUkuran kumpulan data :
46.51 MiBCache otomatis ( dokumentasi ): Ya
Perpecahan :
| Membelah | Contoh |
|---|---|
'train' | 2.041 |
- Struktur fitur :
FeaturesDict({
'algorithm': string,
'iteration': int32,
'steps': Dataset({
'action': Tensor(shape=(3,), dtype=float32),
'discount': float32,
'infos': FeaturesDict({
'action_log_probs': float64,
'qpos': Tensor(shape=(6,), dtype=float64),
'qvel': Tensor(shape=(6,), dtype=float64),
}),
'is_first': bool,
'is_last': bool,
'is_terminal': bool,
'observation': Tensor(shape=(11,), dtype=float32),
'reward': float32,
}),
})
- Dokumentasi fitur :
| Fitur | Kelas | Membentuk | Tipe D | Keterangan |
|---|---|---|---|---|
| FiturDict | ||||
| algoritma | Tensor | rangkaian | ||
| pengulangan | Tensor | int32 | ||
| Langkah | Himpunan data | |||
| langkah/tindakan | Tensor | (3,) | float32 | |
| langkah/diskon | Tensor | float32 | ||
| langkah/info | FiturDict | |||
| langkah/info/action_log_probs | Tensor | float64 | ||
| langkah/info/qpos | Tensor | (6,) | float64 | |
| langkah/info/qvel | Tensor | (6,) | float64 | |
| langkah/adalah_pertama | Tensor | bodoh | ||
| langkah/adalah_terakhir | Tensor | bodoh | ||
| langkah/is_terminal | Tensor | bodoh | ||
| langkah/pengamatan | Tensor | (11,) | float32 | |
| langkah/hadiah | Tensor | float32 |
- Contoh ( tfds.as_dataframe ):
d4rl_mujoco_hopper/v2-random
Ukuran unduhan :
145.46 MiBUkuran kumpulan data :
130.72 MiBCache otomatis ( dokumentasi ): Hanya ketika
shuffle_files=False(kereta)Perpecahan :
| Membelah | Contoh |
|---|---|
'train' | 45.240 |
- Struktur fitur :
FeaturesDict({
'steps': Dataset({
'action': Tensor(shape=(3,), dtype=float32),
'discount': float32,
'infos': FeaturesDict({
'action_log_probs': float64,
'qpos': Tensor(shape=(6,), dtype=float64),
'qvel': Tensor(shape=(6,), dtype=float64),
}),
'is_first': bool,
'is_last': bool,
'is_terminal': bool,
'observation': Tensor(shape=(11,), dtype=float32),
'reward': float32,
}),
})
- Dokumentasi fitur :
| Fitur | Kelas | Membentuk | Tipe D | Keterangan |
|---|---|---|---|---|
| FiturDict | ||||
| Langkah | Himpunan data | |||
| langkah/tindakan | Tensor | (3,) | float32 | |
| langkah/diskon | Tensor | float32 | ||
| langkah/info | FiturDict | |||
| langkah/info/action_log_probs | Tensor | float64 | ||
| langkah/info/qpos | Tensor | (6,) | float64 | |
| langkah/info/qvel | Tensor | (6,) | float64 | |
| langkah/adalah_pertama | Tensor | bodoh | ||
| langkah/adalah_terakhir | Tensor | bodoh | ||
| langkah/is_terminal | Tensor | bodoh | ||
| langkah/pengamatan | Tensor | (11,) | float32 | |
| langkah/hadiah | Tensor | float32 |
- Contoh ( tfds.as_dataframe ):