tokyo_u_lsmo_converted_externally_to_rlds

  • বর্ণনা :

পিক প্লেস টাস্কের গতি পরিকল্পনা ট্রাজেক্টোরি

বিভক্ত উদাহরণ
'train' 50
  • বৈশিষ্ট্য গঠন :
FeaturesDict({
    'episode_metadata': FeaturesDict({
        'file_path': Text(shape=(), dtype=string),
    }),
    'steps': Dataset({
        'action': Tensor(shape=(7,), dtype=float32, description=Robot action, consists of [3x endeffector position, 3x euler angles,1x gripper action].),
        'discount': Scalar(shape=(), dtype=float32, description=Discount if provided, default to 1.),
        'is_first': bool,
        'is_last': bool,
        'is_terminal': bool,
        'language_embedding': Tensor(shape=(512,), dtype=float32, description=Kona language embedding. See https://tfhub.dev/google/universal-sentence-encoder-large/5),
        'language_instruction': Text(shape=(), dtype=string),
        'observation': FeaturesDict({
            'image': Image(shape=(120, 120, 3), dtype=uint8, description=Main camera RGB observation.),
            'state': Tensor(shape=(13,), dtype=float32, description=Robot state, consists of [3x endeffector position, 3x euler angles,6x robot joint angles, 1x gripper position].),
        }),
        'reward': Scalar(shape=(), dtype=float32, description=Reward if provided, 1 on final step for demos.),
    }),
})
  • বৈশিষ্ট্য ডকুমেন্টেশন :
বৈশিষ্ট্য ক্লাস আকৃতি ডিটাইপ বর্ণনা
ফিচারসডিক্ট
episode_metadata ফিচারসডিক্ট
episode_metadata/file_path পাঠ্য স্ট্রিং মূল ডেটা ফাইলের পথ।
পদক্ষেপ ডেটাসেট
পদক্ষেপ/ক্রিয়া টেনসর (৭,) float32 রোবট অ্যাকশন, [3x এন্ডফেক্টর অবস্থান, 3x ইউলার অ্যাঙ্গেল, 1x গ্রিপার অ্যাকশন] নিয়ে গঠিত।
পদক্ষেপ/ছাড় স্কেলার float32 ডিসকাউন্ট দেওয়া হলে, ডিফল্ট 1.
steps/is_first টেনসর bool
ধাপ/শেষ_শেষ টেনসর bool
steps/is_terminal টেনসর bool
পদক্ষেপ/ভাষা_এম্বেডিং টেনসর (512,) float32 কোন ভাষা এম্বেডিং. https://tfhub.dev/google/universal-sentence-encoder-large/5 দেখুন
পদক্ষেপ/ভাষা_নির্দেশ পাঠ্য স্ট্রিং ভাষার নির্দেশনা।
পদক্ষেপ/পর্যবেক্ষণ ফিচারসডিক্ট
পদক্ষেপ/পর্যবেক্ষণ/চিত্র ছবি (120, 120, 3) uint8 প্রধান ক্যামেরা আরজিবি পর্যবেক্ষণ।
পদক্ষেপ/পর্যবেক্ষণ/রাষ্ট্র টেনসর (13,) float32 রোবট অবস্থা, [3x এন্ডফেক্টর অবস্থান, 3x ইউলার কোণ, 6x রোবট জয়েন্ট কোণ, 1x গ্রিপার অবস্থান] নিয়ে গঠিত।
পদক্ষেপ/পুরস্কার স্কেলার float32 প্রদান করা হলে পুরস্কার, ডেমোর জন্য চূড়ান্ত ধাপে 1।
  • উদ্ধৃতি :
@Article{Osa22,
  author  = {Takayuki Osa},
  journal = {The International Journal of Robotics Research},
  title   = {Motion Planning by Learning the Solution Manifold in Trajectory Optimization},
  year    = {2022},
  number  = {3},
  pages   = {291--311},
  volume  = {41},
}