- Description:
Franka arm interacting with kitchen
Homepage: https://www.kaggle.com/datasets/oiermees/taco-robot
Source code:
tfds.robotics.rtx.TacoPlay
Versions:
0.1.0
(default): Initial release.
Download size:
Unknown size
Dataset size:
47.77 GiB
Auto-cached (documentation): No
Splits:
Split | Examples |
---|---|
'test' |
361 |
'train' |
3,242 |
- Feature structure:
FeaturesDict({
'steps': Dataset({
'action': FeaturesDict({
'actions': Tensor(shape=(7,), dtype=float32, description=absolute desired values for gripper pose (first 6 dimensions are x, y, z, yaw, pitch, roll), last dimension is open_gripper (-1 is open gripper, 1 is close)),
'rel_actions_gripper': Tensor(shape=(7,), dtype=float32, description=relative actions for gripper pose in the gripper camera frame (first 6 dimensions are x, y, z, yaw, pitch, roll), last dimension is open_gripper (-1 is open gripper, 1 is close)),
'rel_actions_world': Tensor(shape=(7,), dtype=float32, description=relative actions for gripper pose in the robot base frame (first 6 dimensions are x, y, z, yaw, pitch, roll), last dimension is open_gripper (-1 is open gripper, 1 is close)),
'terminate_episode': float32,
}),
'is_first': bool,
'is_last': bool,
'is_terminal': bool,
'observation': FeaturesDict({
'depth_gripper': Tensor(shape=(84, 84), dtype=float32),
'depth_static': Tensor(shape=(150, 200), dtype=float32),
'natural_language_embedding': Tensor(shape=(512,), dtype=float32),
'natural_language_instruction': string,
'rgb_gripper': Image(shape=(84, 84, 3), dtype=uint8),
'rgb_static': Image(shape=(150, 200, 3), dtype=uint8, description=RGB static image of shape. (150, 200, 3). Subsampled from (200,200, 3) image.),
'robot_obs': Tensor(shape=(15,), dtype=float32, description=EE position (3), EE orientation in euler angles (3), gripper width (1), joint positions (7), gripper action (1)),
'structured_language_instruction': string,
}),
'reward': Scalar(shape=(), dtype=float32),
}),
})
- Feature documentation:
Feature | Class | Shape | Dtype | Description |
---|---|---|---|---|
FeaturesDict | ||||
steps | Dataset | |||
steps/action | FeaturesDict | |||
steps/action/actions | Tensor | (7,) | float32 | absolute desired values for gripper pose (first 6 dimensions are x, y, z, yaw, pitch, roll), last dimension is open_gripper (-1 is open gripper, 1 is close) |
steps/action/rel_actions_gripper | Tensor | (7,) | float32 | relative actions for gripper pose in the gripper camera frame (first 6 dimensions are x, y, z, yaw, pitch, roll), last dimension is open_gripper (-1 is open gripper, 1 is close) |
steps/action/rel_actions_world | Tensor | (7,) | float32 | relative actions for gripper pose in the robot base frame (first 6 dimensions are x, y, z, yaw, pitch, roll), last dimension is open_gripper (-1 is open gripper, 1 is close) |
steps/action/terminate_episode | Tensor | float32 | ||
steps/is_first | Tensor | bool | ||
steps/is_last | Tensor | bool | ||
steps/is_terminal | Tensor | bool | ||
steps/observation | FeaturesDict | |||
steps/observation/depth_gripper | Tensor | (84, 84) | float32 | |
steps/observation/depth_static | Tensor | (150, 200) | float32 | |
steps/observation/natural_language_embedding | Tensor | (512,) | float32 | |
steps/observation/natural_language_instruction | Tensor | string | Natural language instruction is a natural language instruction randomly sampled based on potential task synonyms derived from the structured language task. For example, 'turn blue light off' may map to 'switch the blue color light to off'. | |
steps/observation/rgb_gripper | Image | (84, 84, 3) | uint8 | |
steps/observation/rgb_static | Image | (150, 200, 3) | uint8 | RGB static image of shape. (150, 200, 3). Subsampled from (200,200, 3) image. |
steps/observation/robot_obs | Tensor | (15,) | float32 | EE position (3), EE orientation in euler angles (3), gripper width (1), joint positions (7), gripper action (1) |
steps/observation/structured_language_instruction | Tensor | string | One of 25 possible structured language instructions, see list in https://arxiv.org/pdf/2210.01911.pdf Table 2. | |
steps/reward | Scalar | float32 |
Supervised keys (See
as_supervised
doc):None
Figure (tfds.show_examples): Not supported.
Examples (tfds.as_dataframe):
- Citation:
@inproceedings{rosete2022tacorl,
author = {Erick Rosete-Beas and Oier Mees and Gabriel Kalweit and Joschka Boedecker and Wolfram Burgard},
title = {Latent Plans for Task Agnostic Offline Reinforcement Learning},
journal = {Proceedings of the 6th Conference on Robot Learning (CoRL)},
year = {2022}
}
@inproceedings{mees23hulc2,
title={Grounding Language with Visual Affordances over Unstructured Data},
author={Oier Mees and Jessica Borja-Diaz and Wolfram Burgard},
booktitle = {Proceedings of the IEEE International Conference on Robotics and Automation (ICRA)},
year={2023},
address = {London, UK}
}