- Description:
 
MSLR-WEB are two large-scale Learning-to-Rank datasets released by Microsoft Research. The first dataset (called "30k") contains 30,000 queries and the second dataset (called "10k") contains 10,000 queries. Each dataset consists of query-document pairs represented as feature vectors and corresponding relevance judgment labels.
You can specify whether to use the "10k" or "30k" version of the dataset, and a corresponding fold, as follows:
ds = tfds.load("mslr_web/30k_fold1")
If only mslr_web is specified, the mslr_web/10k_fold1 option is selected by
default:
# This is the same as `tfds.load("mslr_web/10k_fold1")`
ds = tfds.load("mslr_web")
Homepage: https://www.microsoft.com/en-us/research/project/mslr/
Source code:
tfds.ranking.mslr_web.MslrWebVersions:
1.0.0: Initial release.1.1.0: Bundle features into a single 'float_features' feature.1.2.0(default): Add query and document identifiers.
Auto-cached (documentation): No
Feature structure:
FeaturesDict({
    'doc_id': Tensor(shape=(None,), dtype=int64),
    'float_features': Tensor(shape=(None, 136), dtype=float64),
    'label': Tensor(shape=(None,), dtype=float64),
    'query_id': Text(shape=(), dtype=string),
})
- Feature documentation:
 
| Feature | Class | Shape | Dtype | Description | 
|---|---|---|---|---|
| FeaturesDict | ||||
| doc_id | Tensor | (None,) | int64 | |
| float_features | Tensor | (None, 136) | float64 | |
| label | Tensor | (None,) | float64 | |
| query_id | Text | string | 
Supervised keys (See
as_superviseddoc):NoneFigure (tfds.show_examples): Not supported.
Citation:
@article{DBLP:journals/corr/QinL13,
  author    = {Tao Qin and Tie{-}Yan Liu},
  title     = {Introducing {LETOR} 4.0 Datasets},
  journal   = {CoRR},
  volume    = {abs/1306.2597},
  year      = {2013},
  url       = {http://arxiv.org/abs/1306.2597},
  timestamp = {Mon, 01 Jul 2013 20:31:25 +0200},
  biburl    = {http://dblp.uni-trier.de/rec/bib/journals/corr/QinL13},
  bibsource = {dblp computer science bibliography, http://dblp.org}
}
mslr_web/10k_fold1 (default config)
Download size:
1.15 GiBDataset size:
310.08 MiBSplits:
| Split | Examples | 
|---|---|
'test' | 
2,000 | 
'train' | 
6,000 | 
'vali' | 
2,000 | 
- Examples (tfds.as_dataframe):
 
mslr_web/10k_fold2
Download size:
1.15 GiBDataset size:
310.08 MiBSplits:
| Split | Examples | 
|---|---|
'test' | 
2,000 | 
'train' | 
6,000 | 
'vali' | 
2,000 | 
- Examples (tfds.as_dataframe):
 
mslr_web/10k_fold3
Download size:
1.15 GiBDataset size:
310.08 MiBSplits:
| Split | Examples | 
|---|---|
'test' | 
2,000 | 
'train' | 
6,000 | 
'vali' | 
2,000 | 
- Examples (tfds.as_dataframe):
 
mslr_web/10k_fold4
Download size:
1.15 GiBDataset size:
310.08 MiBSplits:
| Split | Examples | 
|---|---|
'test' | 
2,000 | 
'train' | 
6,000 | 
'vali' | 
2,000 | 
- Examples (tfds.as_dataframe):
 
mslr_web/10k_fold5
Download size:
1.15 GiBDataset size:
310.08 MiBSplits:
| Split | Examples | 
|---|---|
'test' | 
2,000 | 
'train' | 
6,000 | 
'vali' | 
2,000 | 
- Examples (tfds.as_dataframe):
 
mslr_web/30k_fold1
Download size:
3.59 GiBDataset size:
964.09 MiBSplits:
| Split | Examples | 
|---|---|
'test' | 
6,306 | 
'train' | 
18,919 | 
'vali' | 
6,306 | 
- Examples (tfds.as_dataframe):
 
mslr_web/30k_fold2
Download size:
3.59 GiBDataset size:
964.09 MiBSplits:
| Split | Examples | 
|---|---|
'test' | 
6,307 | 
'train' | 
18,918 | 
'vali' | 
6,306 | 
- Examples (tfds.as_dataframe):
 
mslr_web/30k_fold3
Download size:
3.59 GiBDataset size:
964.09 MiBSplits:
| Split | Examples | 
|---|---|
'test' | 
6,306 | 
'train' | 
18,918 | 
'vali' | 
6,307 | 
- Examples (tfds.as_dataframe):
 
mslr_web/30k_fold4
Download size:
3.59 GiBDataset size:
964.09 MiBSplits:
| Split | Examples | 
|---|---|
'test' | 
6,306 | 
'train' | 
18,919 | 
'vali' | 
6,306 | 
- Examples (tfds.as_dataframe):
 
mslr_web/30k_fold5
Download size:
3.59 GiBDataset size:
964.09 MiBSplits:
| Split | Examples | 
|---|---|
'test' | 
6,306 | 
'train' | 
18,919 | 
'vali' | 
6,306 | 
- Examples (tfds.as_dataframe):