- Tanım :
 
Franka kavranamayan nesneleri manipüle ediyor
Ana sayfa : --
Kaynak kodu :
tfds.robotics.rtx.KaistNonprehensileConvertedExternallyToRldsSürümler :
-  
0.1.0(varsayılan): İlk sürüm. 
-  
 İndirme boyutu :
Unknown sizeVeri kümesi boyutu :
11.71 GiBOtomatik önbelleğe alınmış ( belgeler ): Hayır
Bölünmeler :
| Bölmek | Örnekler | 
|---|---|
 'train' | 201 | 
- Özellik yapısı :
 
FeaturesDict({
    'episode_metadata': FeaturesDict({
        'file_path': Text(shape=(), dtype=string),
    }),
    'steps': Dataset({
        'action': Tensor(shape=(20,), dtype=float32, description=Robot action, consists of [3x end-effector position residual, 3x end-effector axis-angle residual, 7x robot joint k_p gain coefficient, 7x robot joint damping ratio coefficient].The action residuals are global, i.e. multiplied on theleft-hand side of the current end-effector state.),
        'discount': Scalar(shape=(), dtype=float32, description=Discount if provided, default to 1.),
        'is_first': bool,
        'is_last': bool,
        'is_terminal': bool,
        'language_embedding': Tensor(shape=(512,), dtype=float32, description=Kona language embedding. See https://tfhub.dev/google/universal-sentence-encoder-large/5),
        'language_instruction': Text(shape=(), dtype=string),
        'observation': FeaturesDict({
            'image': Image(shape=(480, 640, 3), dtype=uint8, description=Main camera RGB observation.),
            'partial_pointcloud': Tensor(shape=(512, 3), dtype=float32, description=Partial pointcloud observation),
            'state': Tensor(shape=(21,), dtype=float32, description=Robot state, consists of [joint_states, end_effector_pose].Joint states are 14-dimensional, formatted in the order of [q_0, w_0, q_1, w_0, ...].In other words,  joint positions and velocities are interleaved.The end-effector pose is 7-dimensional, formatted in the order of [position, quaternion].The quaternion is formatted in (x,y,z,w) order. The end-effector pose references the tool frame, in the center of the two fingers of the gripper.),
        }),
        'reward': Scalar(shape=(), dtype=float32, description=Reward if provided, 1 on final step for demos.),
    }),
})
- Özellik belgeleri :
 
| Özellik | Sınıf | Şekil | Dtipi | Tanım | 
|---|---|---|---|---|
| ÖzelliklerDict | ||||
| bölüm_meta verileri | ÖzelliklerDict | |||
| bölüm_metadata/dosya_yolu | Metin | sicim | Orijinal veri dosyasının yolu. | |
| adımlar | Veri kümesi | |||
| adımlar/eylem | Tensör | (20,) | kayan nokta32 | Robot eylemi, [3x uç efektör konumu kalıntısı, 3x uç efektör eksen açısı kalıntısı, 7x robot eklemi k_p kazanç katsayısı, 7x robot eklem sönümleme oranı katsayısından oluşur. Eylem artıkları globaldir, yani sol tarafta çarpılır. mevcut uç efektör durumunun. | 
| adımlar/indirim | Skaler | kayan nokta32 | Sağlanırsa indirim, varsayılan olarak 1'dir. | |
| adımlar/is_first | Tensör | bool | ||
| adımlar/is_last | Tensör | bool | ||
| adımlar/is_terminal | Tensör | bool | ||
| adımlar/dil_embedding | Tensör | (512,) | kayan nokta32 | Kona dili yerleştirme. Bkz. https://tfhub.dev/google/universal-sentence-encoder-large/5 | 
| adımlar/language_instruction | Metin | sicim | Dil Öğretimi. | |
| adımlar/gözlem | ÖzelliklerDict | |||
| adımlar/gözlem/görüntü | Resim | (480, 640, 3) | uint8 | Ana kamera RGB gözlemi. | 
| adımlar/gözlem/partial_pointcloud | Tensör | (512, 3) | kayan nokta32 | Kısmi nokta bulutu gözlemi | 
| adımlar/gözlem/durum | Tensör | (21,) | kayan nokta32 | Robot durumu, [joint_states, end_fector_pose]'dan oluşur.Eklem durumları 14 boyutludur, [q_0, w_0, q_1, w_0, ...] sırasına göre biçimlendirilmiştir.Başka bir deyişle, eklem konumları ve hızları serpiştirilmiştir.Son -efektör pozu 7 boyutlu olup, [pozisyon, kuaterniyon] sırasına göre biçimlendirilmiştir. Kuaterniyon (x,y,z,w) sırasına göre biçimlendirilmiştir. Uç efektör pozu, tutucunun iki parmağının ortasındaki alet çerçevesini referans alır. | 
| adımlar/ödül | Skaler | kayan nokta32 | Sağlandığı takdirde ödül, demolar için son adımda 1. | 
Denetlenen anahtarlar (
as_supervisedbelgesine bakın):NoneŞekil ( tfds.show_examples ): Desteklenmiyor.
Örnekler ( tfds.as_dataframe ):
- Alıntı :
 
@article{kimpre,
  title={Pre-and post-contact policy decomposition for non-prehensile manipulation with zero-shot sim-to-real transfer},
  author={Kim, Minchan and Han, Junhyek and Kim, Jaehyung and Kim, Beomjoon},
  booktitle={2023 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)},
  year={2023},
  organization={IEEE}
}