- Description:
 
Large Movie Review Dataset. This is a dataset for binary sentiment classification containing substantially more data than previous benchmark datasets. We provide a set of 25,000 highly polar movie reviews for training, and 25,000 for testing. There is additional unlabeled data for use as well.
Additional Documentation: Explore on Papers With Code
Config description: Plain text
Source code:
tfds.datasets.imdb_reviews.BuilderVersions:
1.0.0(default): New split API (https://tensorflow.org/datasets/splits)
Download size:
80.23 MiBDataset size:
129.83 MiBAuto-cached (documentation): Yes
Splits:
| Split | Examples | 
|---|---|
'test' | 
25,000 | 
'train' | 
25,000 | 
'unsupervised' | 
50,000 | 
- Feature structure:
 
FeaturesDict({
    'label': ClassLabel(shape=(), dtype=int64, num_classes=2),
    'text': Text(shape=(), dtype=string),
})
- Feature documentation:
 
| Feature | Class | Shape | Dtype | Description | 
|---|---|---|---|---|
| FeaturesDict | ||||
| label | ClassLabel | int64 | ||
| text | Text | string | 
Supervised keys (See
as_superviseddoc):('text', 'label')Figure (tfds.show_examples): Not supported.
Examples (tfds.as_dataframe):
- Citation:
 
@InProceedings{maas-EtAl:2011:ACL-HLT2011,
  author    = {Maas, Andrew L.  and  Daly, Raymond E.  and  Pham, Peter T.  and  Huang, Dan  and  Ng, Andrew Y.  and  Potts, Christopher},
  title     = {Learning Word Vectors for Sentiment Analysis},
  booktitle = {Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies},
  month     = {June},
  year      = {2011},
  address   = {Portland, Oregon, USA},
  publisher = {Association for Computational Linguistics},
  pages     = {142--150},
  url       = {http://www.aclweb.org/anthology/P11-1015}
}