- Description:
 
A re-labeled version of CIFAR-100 with real human annotation errors. For every pair (image, label) in the original CIFAR-100 train set, it provides an additional label given by a real human annotator.
Source code:
tfds.image_classification.cifar100_n.Cifar100NVersions:
1.0.0: Initial release.1.0.1(default): Fixed correspondence between annotations and images.
Download size:
160.71 MiBDataset size:
136.07 MiBManual download instructions: This dataset requires you to download the source data manually into
download_config.manual_dir(defaults to~/tensorflow_datasets/downloads/manual/):
Download 'side_info_cifar100N.csv', 'CIFAR-100_human_ordered.npy' and 'image_order_c100.npy' from https://github.com/UCSC-REAL/cifar-10-100n
Then convert 'CIFAR-100_human_ordered.npy' into a CSV file 'CIFAR-100_human_annotations.csv'. This can be done with the following code:
import numpy as np
from tensorflow_datasets.core.utils.lazy_imports_utils import pandas as pd
from tensorflow_datasets.core.utils.lazy_imports_utils import tensorflow as tf
human_labels_np_path = '<local_path>/CIFAR-100_human_ordered.npy'
human_labels_csv_path = '<local_path>/CIFAR-100_human_annotations.csv'
with tf.io.gfile.GFile(human_labels_np_path, "rb") as f:
  human_annotations = np.load(f, allow_pickle=True)
df = pd.DataFrame(human_annotations[()])
with tf.io.gfile.GFile(human_labels_csv_path, "w") as f:
  df.to_csv(f, index=False)
Auto-cached (documentation): Yes
Splits:
| Split | Examples | 
|---|---|
'test' | 
10,000 | 
'train' | 
50,000 | 
- Feature structure:
 
FeaturesDict({
    'coarse_label': ClassLabel(shape=(), dtype=int64, num_classes=20),
    'id': Text(shape=(), dtype=string),
    'image': Image(shape=(32, 32, 3), dtype=uint8),
    'label': ClassLabel(shape=(), dtype=int64, num_classes=100),
    'noise_label': ClassLabel(shape=(), dtype=int64, num_classes=100),
    'worker_id': int64,
    'worker_time': float32,
})
- Feature documentation:
 
| Feature | Class | Shape | Dtype | Description | 
|---|---|---|---|---|
| FeaturesDict | ||||
| coarse_label | ClassLabel | int64 | ||
| id | Text | string | ||
| image | Image | (32, 32, 3) | uint8 | |
| label | ClassLabel | int64 | ||
| noise_label | ClassLabel | int64 | ||
| worker_id | Tensor | int64 | ||
| worker_time | Tensor | float32 | 
Supervised keys (See
as_superviseddoc):NoneFigure (tfds.show_examples):

- Examples (tfds.as_dataframe):
 
- Citation:
 
@inproceedings{wei2022learning,
  title={Learning with Noisy Labels Revisited: A Study Using Real-World Human
  Annotations},
  author={Jiaheng Wei and Zhaowei Zhu and Hao Cheng and Tongliang Liu and Gang
  Niu and Yang Liu},
  booktitle={International Conference on Learning Representations},
  year={2022},
  url={https://openreview.net/forum?id=TBWA6PLJZQm}
}