- Description:
 
Caltech-101 consists of pictures of objects belonging to 101 classes, plus one
background clutter class. Each image is labelled with a single object. Each
class contains roughly 40 to 800 images, totalling around 9k images. Images are
of variable sizes, with typical edge lengths of 200-300 pixels. This version
contains image-level labels only. The original dataset also contains bounding
boxes.
Additional Documentation: Explore on Papers With Code
Homepage: https://doi.org/10.22002/D1.20086
Source code:
tfds.datasets.caltech101.BuilderVersions:
3.0.0: New split API (https://tensorflow.org/datasets/splits)3.0.1: Website URL update3.0.2(default): Download URL update
Download size:
131.05 MiBDataset size:
132.86 MiBAuto-cached (documentation): Yes
Splits:
| Split | Examples | 
|---|---|
'test' | 
6,084 | 
'train' | 
3,060 | 
- Feature structure:
 
FeaturesDict({
    'image': Image(shape=(None, None, 3), dtype=uint8),
    'image/file_name': Text(shape=(), dtype=string),
    'label': ClassLabel(shape=(), dtype=int64, num_classes=102),
})
- Feature documentation:
 
| Feature | Class | Shape | Dtype | Description | 
|---|---|---|---|---|
| FeaturesDict | ||||
| image | Image | (None, None, 3) | uint8 | |
| image/file_name | Text | string | ||
| label | ClassLabel | int64 | 
Supervised keys (See
as_superviseddoc):('image', 'label')Figure (tfds.show_examples):

- Examples (tfds.as_dataframe):
 
- Citation:
 
@article{FeiFei2004LearningGV,
  title={Learning Generative Visual Models from Few Training Examples: An Incremental Bayesian Approach Tested on 101 Object Categories},
  author={Li Fei-Fei and Rob Fergus and Pietro Perona},
  journal={Computer Vision and Pattern Recognition Workshop},
  year={2004},
}