- Tanım :
 
Franka masa üstü seçim yeri görevlerini gerçekleştiriyor
Ana sayfa : https://arxiv.org/abs/2306.10007
Kaynak kodu :
tfds.robotics.rtx.BerkeleyRptConvertedExternallyToRldsSürümler :
-  
0.1.0(varsayılan): İlk sürüm. 
-  
 İndirme boyutu :
Unknown sizeVeri kümesi boyutu :
40.64 GiBOtomatik önbelleğe alınmış ( belgeler ): Hayır
Bölünmeler :
| Bölmek | Örnekler | 
|---|---|
 'train' | 908 | 
- Özellik yapısı :
 
FeaturesDict({
    'episode_metadata': FeaturesDict({
        'file_path': Text(shape=(), dtype=string),
    }),
    'steps': Dataset({
        'action': Tensor(shape=(8,), dtype=float32, description=Robot action, consists of [7 delta joint pos,1x gripper binary state].),
        'discount': Scalar(shape=(), dtype=float32, description=Discount if provided, default to 1.),
        'is_first': bool,
        'is_last': bool,
        'is_terminal': bool,
        'language_embedding': Tensor(shape=(512,), dtype=float32, description=Kona language embedding. See https://tfhub.dev/google/universal-sentence-encoder-large/5),
        'language_instruction': Text(shape=(), dtype=string),
        'observation': FeaturesDict({
            'gripper': Scalar(shape=(), dtype=bool, description=Binary gripper state (1 - closed, 0 - open)),
            'hand_image': Image(shape=(480, 640, 3), dtype=uint8, description=Hand camera RGB observation.),
            'joint_pos': Tensor(shape=(7,), dtype=float32, description=xArm joint positions (7 DoF).),
        }),
        'reward': Scalar(shape=(), dtype=float32, description=Reward if provided, 1 on final step for demos.),
    }),
})
- Özellik belgeleri :
 
| Özellik | Sınıf | Şekil | Dtipi | Tanım | 
|---|---|---|---|---|
| ÖzelliklerDict | ||||
| bölüm_meta verileri | ÖzelliklerDict | |||
| bölüm_metadata/dosya_yolu | Metin | sicim | Orijinal veri dosyasının yolu. | |
| adımlar | Veri kümesi | |||
| adımlar/eylem | Tensör | (8,) | kayan nokta32 | Robot hareketi, [7 delta eklem konumu,1x tutucu ikili durumu]'ndan oluşur. | 
| adımlar/indirim | Skaler | kayan nokta32 | Sağlanırsa indirim, varsayılan olarak 1'dir. | |
| adımlar/is_first | Tensör | bool | ||
| adımlar/is_last | Tensör | bool | ||
| adımlar/is_terminal | Tensör | bool | ||
| adımlar/dil_embedding | Tensör | (512,) | kayan nokta32 | Kona dili yerleştirme. Bkz. https://tfhub.dev/google/universal-sentence-encoder-large/5 | 
| adımlar/language_instruction | Metin | sicim | Dil Öğretimi. | |
| adımlar/gözlem | ÖzelliklerDict | |||
| adımlar/gözlem/kıskaç | Skaler | bool | İkili tutucu durumu (1 - kapalı, 0 - açık) | |
| adımlar/gözlem/el_image | Resim | (480, 640, 3) | uint8 | El kamerası RGB gözlemi. | 
| adımlar/gözlem/ortak_pos | Tensör | (7,) | kayan nokta32 | xArm eklem pozisyonları (7 DoF). | 
| adımlar/ödül | Skaler | kayan nokta32 | Sağlandığı takdirde ödül, demolar için son adımda 1. | 
Denetlenen anahtarlar (
as_supervisedbelgesine bakın):NoneŞekil ( tfds.show_examples ): Desteklenmiyor.
Örnekler ( tfds.as_dataframe ):
- Alıntı :
 
@article{Radosavovic2023,
  title={Robot Learning with Sensorimotor Pre-training},
  author={Ilija Radosavovic and Baifeng Shi and Letian Fu and Ken Goldberg and Trevor Darrell and Jitendra Malik},
  year={2023},
  journal={arXiv:2306.10007}
}