- Tanım :
 
Franka sofra hazırlama görevleri
Ana sayfa : https://ut-austin-rpl.github.io/sailor/
Kaynak kodu :
tfds.robotics.rtx.AustinSailorDatasetConvertedExternallyToRldsSürümler :
-  
0.1.0(varsayılan): İlk sürüm. 
-  
 İndirme boyutu :
Unknown sizeVeri kümesi boyutu :
18.85 GiBOtomatik önbelleğe alınmış ( belgeler ): Hayır
Bölünmeler :
| Bölmek | Örnekler | 
|---|---|
 'train' | 240 | 
- Özellik yapısı :
 
FeaturesDict({
    'episode_metadata': FeaturesDict({
        'file_path': Text(shape=(), dtype=string),
    }),
    'steps': Dataset({
        'action': Tensor(shape=(7,), dtype=float32, description=Robot action, consists of [3x ee relative pos, 3x ee relative rotation, 1x gripper action].),
        'discount': Scalar(shape=(), dtype=float32, description=Discount if provided, default to 1.),
        'is_first': bool,
        'is_last': bool,
        'is_terminal': bool,
        'language_embedding': Tensor(shape=(512,), dtype=float32, description=Kona language embedding. See https://tfhub.dev/google/universal-sentence-encoder-large/5),
        'language_instruction': Text(shape=(), dtype=string),
        'observation': FeaturesDict({
            'image': Image(shape=(128, 128, 3), dtype=uint8, description=Main camera RGB observation.),
            'state': Tensor(shape=(8,), dtype=float32, description=Default robot state, consists of [3x robot ee pos, 3x ee quat, 1x gripper state].),
            'state_ee': Tensor(shape=(16,), dtype=float32, description=End-effector state, represented as 4x4 homogeneous transformation matrix of ee pose.),
            'state_gripper': Tensor(shape=(1,), dtype=float32, description=Robot gripper opening width. Ranges between ~0 (closed) to ~0.077 (open)),
            'state_joint': Tensor(shape=(7,), dtype=float32, description=Robot 7-dof joint information (not used in original SAILOR dataset).),
            'wrist_image': Image(shape=(128, 128, 3), dtype=uint8, description=Wrist camera RGB observation.),
        }),
        'reward': Scalar(shape=(), dtype=float32, description=True on last step of the episode.),
    }),
})
- Özellik belgeleri :
 
| Özellik | Sınıf | Şekil | Dtipi | Tanım | 
|---|---|---|---|---|
| ÖzelliklerDict | ||||
| bölüm_meta verileri | ÖzelliklerDict | |||
| bölüm_metadata/dosya_yolu | Metin | sicim | Orijinal veri dosyasının yolu. | |
| adımlar | Veri kümesi | |||
| adımlar/eylem | Tensör | (7,) | kayan nokta32 | Robot hareketi, [3x ee göreceli konum, 3x ee göreceli dönüş, 1x tutucu hareketi]'nden oluşur. | 
| adımlar/indirim | Skaler | kayan nokta32 | Sağlanırsa indirim, varsayılan olarak 1'dir. | |
| adımlar/is_first | Tensör | bool | ||
| adımlar/is_last | Tensör | bool | ||
| adımlar/is_terminal | Tensör | bool | ||
| adımlar/dil_embedding | Tensör | (512,) | kayan nokta32 | Kona dili yerleştirme. Bkz. https://tfhub.dev/google/universal-sentence-encoder-large/5 | 
| adımlar/language_instruction | Metin | sicim | Dil Öğretimi. | |
| adımlar/gözlem | ÖzelliklerDict | |||
| adımlar/gözlem/görüntü | Resim | (128, 128, 3) | uint8 | Ana kamera RGB gözlemi. | 
| adımlar/gözlem/durum | Tensör | (8,) | kayan nokta32 | Varsayılan robot durumu, [3x robot ee pos, 3x ee quat, 1x tutucu durumu]'ndan oluşur. | 
| adımlar/gözlem/durum_ee | Tensör | (16,) | kayan nokta32 | Ee pozunun 4x4 homojen dönüşüm matrisi olarak temsil edilen uç efektör durumu. | 
| adımlar/gözlem/state_gripper | Tensör | (1,) | kayan nokta32 | Robot tutucunun açılma genişliği. ~0 (kapalı) ila ~0,077 (açık) arası aralıklar | 
| adımlar/gözlem/durum_bağlantısı | Tensör | (7,) | kayan nokta32 | Robot 7-dof ortak bilgileri (orijinal SAILOR veri setinde kullanılmaz). | 
| adımlar/gözlem/wrist_image | Resim | (128, 128, 3) | uint8 | Bilek kamerası RGB gözlemi. | 
| adımlar/ödül | Skaler | kayan nokta32 | Bölümün son adımında doğru. | 
Denetlenen anahtarlar (
as_supervisedbelgesine bakın):NoneŞekil ( tfds.show_examples ): Desteklenmiyor.
Örnekler ( tfds.as_dataframe ):
- Alıntı :
 
@inproceedings{nasiriany2022sailor,
      title={Learning and Retrieval from Prior Data for Skill-based Imitation Learning},
      author={Soroush Nasiriany and Tian Gao and Ajay Mandlekar and Yuke Zhu},
      booktitle={Conference on Robot Learning (CoRL)},
      year={2022}
    }