- Tanım :
 
Franka stilize mutfak görevleri
Ana sayfa : https://ut-austin-rpl.github.io/rpl-BUDS/
Kaynak kodu :
tfds.robotics.rtx.AustinBudsDatasetConvertedExternallyToRldsSürümler :
-  
0.1.0(varsayılan): İlk sürüm. 
-  
 İndirme boyutu :
Unknown sizeVeri kümesi boyutu :
1.49 GiBOtomatik önbelleğe alınmış ( belgeler ): Hayır
Bölünmeler :
| Bölmek | Örnekler | 
|---|---|
 'train' | 50 | 
- Özellik yapısı :
 
FeaturesDict({
    'episode_metadata': FeaturesDict({
        'file_path': Text(shape=(), dtype=string),
    }),
    'steps': Dataset({
        'action': Tensor(shape=(7,), dtype=float32, description=Robot action, consists of [6x end effector delta pose, 1x gripper position].),
        'discount': Scalar(shape=(), dtype=float32, description=Discount if provided, default to 1.),
        'is_first': bool,
        'is_last': bool,
        'is_terminal': bool,
        'language_embedding': Tensor(shape=(512,), dtype=float32, description=Kona language embedding. See https://tfhub.dev/google/universal-sentence-encoder-large/5),
        'language_instruction': Text(shape=(), dtype=string),
        'observation': FeaturesDict({
            'image': Image(shape=(128, 128, 3), dtype=uint8, description=Main camera RGB observation.),
            'state': Tensor(shape=(24,), dtype=float32, description=Robot state, consists of [7x robot joint angles, 1x gripper position, 16x robot end-effector homogeneous matrix].),
            'wrist_image': Image(shape=(128, 128, 3), dtype=uint8, description=Wrist camera RGB observation.),
        }),
        'reward': Scalar(shape=(), dtype=float32, description=Reward if provided, 1 on final step for demos.),
    }),
})
- Özellik belgeleri :
 
| Özellik | Sınıf | Şekil | Dtipi | Tanım | 
|---|---|---|---|---|
| ÖzelliklerDict | ||||
| bölüm_meta verileri | ÖzelliklerDict | |||
| bölüm_metadata/dosya_yolu | Metin | sicim | Orijinal veri dosyasının yolu. | |
| adımlar | Veri kümesi | |||
| adımlar/eylem | Tensör | (7,) | kayan nokta32 | Robot hareketi, [6x uç efektör delta pozu, 1x tutucu pozisyonu] içerir. | 
| adımlar/indirim | Skaler | kayan nokta32 | Sağlanırsa indirim, varsayılan olarak 1'dir. | |
| adımlar/is_first | Tensör | bool | ||
| adımlar/is_last | Tensör | bool | ||
| adımlar/is_terminal | Tensör | bool | ||
| adımlar/dil_embedding | Tensör | (512,) | kayan nokta32 | Kona dili yerleştirme. Bkz. https://tfhub.dev/google/universal-sentence-encoder-large/5 | 
| adımlar/language_instruction | Metin | sicim | Dil Öğretimi. | |
| adımlar/gözlem | ÖzelliklerDict | |||
| adımlar/gözlem/görüntü | Resim | (128, 128, 3) | uint8 | Ana kamera RGB gözlemi. | 
| adımlar/gözlem/durum | Tensör | (24,) | kayan nokta32 | Robot durumu, [7x robot eklem açıları, 1x tutucu konumu, 16x robot uç efektör homojen matrisinden] oluşur. | 
| adımlar/gözlem/wrist_image | Resim | (128, 128, 3) | uint8 | Bilek kamerası RGB gözlemi. | 
| adımlar/ödül | Skaler | kayan nokta32 | Sağlandığı takdirde ödül, demolar için son adımda 1. | 
Denetlenen anahtarlar (
as_supervisedbelgesine bakın):NoneŞekil ( tfds.show_examples ): Desteklenmiyor.
Örnekler ( tfds.as_dataframe ):
- Alıntı :
 
@article{zhu2022bottom,
  title={Bottom-Up Skill Discovery From Unsegmented Demonstrations for Long-Horizon Robot Manipulation},
  author={Zhu, Yifeng and Stone, Peter and Zhu, Yuke},
  journal={IEEE Robotics and Automation Letters},
  volume={7},
  number={2},
  pages={4126--4133},
  year={2022},
  publisher={IEEE}
}