|  לְהַפִּיל |  Raise a exception to abort the process when called. | 
|  Abs <T extends TNumber > |  Computes the absolute value of a tensor. | 
|  AccumulateN <T extends TType > |  Returns the element-wise sum of a list of tensors. | 
|  AccumulatorApplyGradient |  Applies a gradient to a given accumulator. | 
|  AccumulatorNumAccumulated |  Returns the number of gradients aggregated in the given accumulators. | 
|  AccumulatorSetGlobalStep |  Updates the accumulator with a new value for global_step. | 
|  AccumulatorTakeGradient <T extends TType > |  Extracts the average gradient in the given ConditionalAccumulator. | 
|  Acos <T extends TType > |  Computes acos of x element-wise. | 
|  Acosh <T extends TType > |  Computes inverse hyperbolic cosine of x element-wise. | 
|  Add <T extends TType > |  Returns x + y element-wise. | 
|  AddManySparseToTensorsMap |  Add an `N`-minibatch `SparseTensor` to a `SparseTensorsMap`, return `N` handles. | 
|  AddN <T extends TType > |  Add all input tensors element wise. | 
|  AddSparseToTensorsMap |  Add a `SparseTensor` to a `SparseTensorsMap` return its handle. | 
|  AdjustContrast <T extends TNumber > |  Adjust the contrast of one or more images. | 
|  AdjustHue <T extends TNumber > |  Adjust the hue of one or more images. | 
|  AdjustSaturation <T extends TNumber > |  Adjust the saturation of one or more images. | 
|  כֹּל |  Computes the "logical and" of elements across dimensions of a tensor. | 
|  AllCandidateSampler |  Generates labels for candidate sampling with a learned unigram distribution. | 
|  AllReduce <T extends TNumber > |  Mutually reduces multiple tensors of identical type and shape. | 
|  AllToAll <T extends TType > |  An Op to exchange data across TPU replicas. | 
|  Angle <U extends TNumber > |  Returns the argument of a complex number. | 
|  AnonymousIterator |  A container for an iterator resource. | 
|  AnonymousMemoryCache  |  | 
|  AnonymousMultiDeviceIterator |  A container for a multi device iterator resource. | 
|  AnonymousRandomSeedGenerator  |  | 
|  AnonymousSeedGenerator  |  | 
|  כֹּל |  Computes the "logical or" of elements across dimensions of a tensor. | 
|  ApplyAdaMax <T extends TType > |  Update '*var' according to the AdaMax algorithm. | 
|  ApplyAdadelta <T extends TType > |  Update '*var' according to the adadelta scheme. | 
|  ApplyAdagrad <T extends TType > |  Update '*var' according to the adagrad scheme. | 
|  ApplyAdagradDa <T extends TType > |  Update '*var' according to the proximal adagrad scheme. | 
|  ApplyAdagradV2 <T extends TType > |  Update '*var' according to the adagrad scheme. | 
|  ApplyAdam <T extends TType > |  Update '*var' according to the Adam algorithm. | 
|  ApplyAddSign <T extends TType > |  Update '*var' according to the AddSign update. | 
|  ApplyCenteredRmsProp <T extends TType > |  Update '*var' according to the centered RMSProp algorithm. | 
|  ApplyFtrl <T extends TType > |  Update '*var' according to the Ftrl-proximal scheme. | 
|  ApplyGradientDescent <T extends TType > |  Update '*var' by subtracting 'alpha' * 'delta' from it. | 
|  ApplyMomentum <T extends TType > |  Update '*var' according to the momentum scheme. | 
|  ApplyPowerSign <T extends TType > |  Update '*var' according to the AddSign update. | 
|  ApplyProximalAdagrad <T extends TType > |  Update '*var' and '*accum' according to FOBOS with Adagrad learning rate. | 
|  ApplyProximalGradientDescent <T extends TType > |  Update '*var' as FOBOS algorithm with fixed learning rate. | 
|  ApplyRmsProp <T extends TType > |  Update '*var' according to the RMSProp algorithm. | 
|  ApproximateEqual |  Returns the truth value of abs(xy) < tolerance element-wise. | 
|  ArgMax <V extends TNumber > |  Returns the index with the largest value across dimensions of a tensor. | 
|  ArgMin <V extends TNumber > |  Returns the index with the smallest value across dimensions of a tensor. | 
|  AsString |  Converts each entry in the given tensor to strings. | 
|  Asin <T extends TType > |  Computes the trignometric inverse sine of x element-wise. | 
|  Asinh <T extends TType > |  Computes inverse hyperbolic sine of x element-wise. | 
|  AssertCardinalityDataset  |  | 
|  AssertNextDataset  |  | 
|  AssertThat |  Asserts that the given condition is true. | 
|  Assign <T extends TType > |  Update 'ref' by assigning 'value' to it. | 
|  AssignAdd <T extends TType > |  Update 'ref' by adding 'value' to it. | 
|  AssignAddVariableOp |  Adds a value to the current value of a variable. | 
|  AssignSub <T extends TType > |  Update 'ref' by subtracting 'value' from it. | 
|  AssignSubVariableOp |  Subtracts a value from the current value of a variable. | 
|  AssignVariableOp |  Assigns a new value to a variable. | 
|  Atan <T extends TType > |  Computes the trignometric inverse tangent of x element-wise. | 
|  Atan2 <T extends TNumber > |  Computes arctangent of `y/x` element-wise, respecting signs of the arguments. | 
|  Atanh <T extends TType > |  Computes inverse hyperbolic tangent of x element-wise. | 
|  AudioSpectrogram |  Produces a visualization of audio data over time. | 
|  AudioSummary |  Outputs a `Summary` protocol buffer with audio. | 
|  AutoShardDataset |  Creates a dataset that shards the input dataset. | 
|  AvgPool <T extends TNumber > |  Performs average pooling on the input. | 
|  AvgPool3d <T extends TNumber > |  Performs 3D average pooling on the input. | 
|  AvgPool3dGrad <T extends TNumber > |  Computes gradients of average pooling function. | 
|  AvgPoolGrad <T extends TNumber > |  Computes gradients of the average pooling function. | 
|  BandPart <T extends TType > |  Copy a tensor setting everything outside a central band in each innermost matrix to zero. | 
|  BandedTriangularSolve <T extends TType >  |  | 
|  מַחסוֹם |  Defines a barrier that persists across different graph executions. | 
|  BarrierClose |  Closes the given barrier. | 
|  BarrierIncompleteSize |  Computes the number of incomplete elements in the given barrier. | 
|  BarrierInsertMany |  For each key, assigns the respective value to the specified component. | 
|  BarrierReadySize |  Computes the number of complete elements in the given barrier. | 
|  BarrierTakeMany |  Takes the given number of completed elements from a barrier. | 
|  קְבוּצָה |  Batches all input tensors nondeterministically. | 
|  BatchCholesky <T extends TNumber >  |  | 
|  BatchCholeskyGrad <T extends TNumber >  |  | 
|  BatchDataset |  Creates a dataset that batches `batch_size` elements from `input_dataset`. | 
|  BatchFft  |  | 
|  BatchFft2d  |  | 
|  BatchFft3d  |  | 
|  BatchIfft  |  | 
|  BatchIfft2d  |  | 
|  BatchIfft3d  |  | 
|  BatchMatMul <T extends TType > |  Multiplies slices of two tensors in batches. | 
|  BatchMatrixBandPart <T extends TType >  |  | 
|  BatchMatrixDeterminant <T extends TType >  |  | 
|  BatchMatrixDiag <T extends TType >  |  | 
|  BatchMatrixDiagPart <T extends TType >  |  | 
|  BatchMatrixInverse <T extends TNumber >  |  | 
|  BatchMatrixSetDiag <T extends TType >  |  | 
|  BatchMatrixSolve <T extends TNumber >  |  | 
|  BatchMatrixSolveLs <T extends TNumber >  |  | 
|  BatchMatrixTriangularSolve <T extends TNumber >  |  | 
|  BatchNormWithGlobalNormalization <T extends TType > |  Batch normalization. | 
|  BatchNormWithGlobalNormalizationGrad <T extends TType > |  Gradients for batch normalization. | 
|  BatchSelfAdjointEig <T extends TNumber >  |  | 
|  BatchSvd <T extends TType >  |  | 
|  BatchToSpace <T extends TType > |  BatchToSpace for 4-D tensors of type T. | 
|  BatchToSpaceNd <T extends TType > |  BatchToSpace for ND tensors of type T. | 
|  BesselI0 <T extends TNumber >  |  | 
|  BesselI0e <T extends TNumber >  |  | 
|  BesselI1 <T extends TNumber >  |  | 
|  BesselI1e <T extends TNumber >  |  | 
|  BesselJ0 <T extends TNumber >  |  | 
|  BesselJ1 <T extends TNumber >  |  | 
|  BesselK0 <T extends TNumber >  |  | 
|  BesselK0e <T extends TNumber >  |  | 
|  BesselK1 <T extends TNumber >  |  | 
|  BesselK1e <T extends TNumber >  |  | 
|  BesselY0 <T extends TNumber >  |  | 
|  BesselY1 <T extends TNumber >  |  | 
|  Betainc <T extends TNumber > |  Compute the regularized incomplete beta integral \\(I_x(a, b)\\). | 
|  BiasAdd <T extends TType > |  Adds `bias` to `value`. | 
|  BiasAddGrad <T extends TType > |  The backward operation for "BiasAdd" on the "bias" tensor. | 
|  Bincount <T extends TNumber > |  Counts the number of occurrences of each value in an integer array. | 
|  Bitcast <U extends TType > |  Bitcasts a tensor from one type to another without copying data. | 
|  BitwiseAnd <T extends TNumber > |  Elementwise computes the bitwise AND of `x` and `y`. | 
|  BitwiseOr <T extends TNumber > |  Elementwise computes the bitwise OR of `x` and `y`. | 
|  BitwiseXor <T extends TNumber > |  Elementwise computes the bitwise XOR of `x` and `y`. | 
|  BlockLSTM <T extends TNumber > |  Computes the LSTM cell forward propagation for all the time steps. | 
|  BlockLSTMGrad <T extends TNumber > |  Computes the LSTM cell backward propagation for the entire time sequence. | 
|  BoostedTreesAggregateStats |  Aggregates the summary of accumulated stats for the batch. | 
|  BoostedTreesBucketize |  Bucketize each feature based on bucket boundaries. | 
|  BoostedTreesCalculateBestFeatureSplit |  Calculates gains for each feature and returns the best possible split information for the feature. | 
|  BoostedTreesCalculateBestFeatureSplitV2 |  Calculates gains for each feature and returns the best possible split information for each node. | 
|  BoostedTreesCalculateBestGainsPerFeature |  Calculates gains for each feature and returns the best possible split information for the feature. | 
|  BoostedTreesCenterBias |  Calculates the prior from the training data (the bias) and fills in the first node with the logits' prior. | 
|  BoostedTreesCreateEnsemble |  Creates a tree ensemble model and returns a handle to it. | 
|  BoostedTreesCreateQuantileStreamResource |  Create the Resource for Quantile Streams. | 
|  BoostedTreesDeserializeEnsemble |  Deserializes a serialized tree ensemble config and replaces current tree  מִכלוֹל.  | 
|  BoostedTreesEnsembleResourceHandleOp |  Creates a handle to a BoostedTreesEnsembleResource | 
|  BoostedTreesExampleDebugOutputs |  Debugging/model interpretability outputs for each example. | 
|  BoostedTreesFlushQuantileSummaries |  Flush the quantile summaries from each quantile stream resource. | 
|  BoostedTreesGetEnsembleStates |  Retrieves the tree ensemble resource stamp token, number of trees and growing statistics. | 
|  BoostedTreesMakeQuantileSummaries |  Makes the summary of quantiles for the batch. | 
|  BoostedTreesMakeStatsSummary |  Makes the summary of accumulated stats for the batch. | 
|  BoostedTreesPredict |  Runs multiple additive regression ensemble predictors on input instances and  computes the logits.  | 
|  BoostedTreesQuantileStreamResourceAddSummaries |  Add the quantile summaries to each quantile stream resource. | 
|  BoostedTreesQuantileStreamResourceDeserialize |  Deserialize bucket boundaries and ready flag into current QuantileAccumulator. | 
|  BoostedTreesQuantileStreamResourceFlush |  Flush the summaries for a quantile stream resource. | 
|  BoostedTreesQuantileStreamResourceGetBucketBoundaries |  Generate the bucket boundaries for each feature based on accumulated summaries. | 
|  BoostedTreesQuantileStreamResourceHandleOp |  Creates a handle to a BoostedTreesQuantileStreamResource. | 
|  BoostedTreesSerializeEnsemble |  Serializes the tree ensemble to a proto. | 
|  BoostedTreesSparseAggregateStats |  Aggregates the summary of accumulated stats for the batch. | 
|  BoostedTreesSparseCalculateBestFeatureSplit |  Calculates gains for each feature and returns the best possible split information for the feature. | 
|  BoostedTreesTrainingPredict |  Runs multiple additive regression ensemble predictors on input instances and  computes the update to cached logits.  | 
|  BoostedTreesUpdateEnsemble |  Updates the tree ensemble by either adding a layer to the last tree being grown  or by starting a new tree.  | 
|  BoostedTreesUpdateEnsembleV2 |  Updates the tree ensemble by adding a layer to the last tree being grown  or by starting a new tree.  | 
|  BroadcastDynamicShape <T extends TNumber > |  Return the shape of s0 op s1 with broadcast. | 
|  BroadcastGradientArgs <T extends TNumber > |  Return the reduction indices for computing gradients of s0 op s1 with broadcast. | 
|  BroadcastHelper <T extends TType > |  Helper operator for performing XLA-style broadcasts  Broadcasts `lhs` and `rhs` to the same rank, by adding size 1 dimensions to whichever of `lhs` and `rhs` has the lower rank, using XLA's broadcasting rules for binary operators.  | 
|  BroadcastRecv <T extends TType > |  Receives a tensor value broadcast from another device. | 
|  BroadcastSend <T extends TType > |  Broadcasts a tensor value to one or more other devices. | 
|  BroadcastTo <T extends TType > |  Broadcast an array for a compatible shape. | 
|  Bucketize |  Bucketizes 'input' based on 'boundaries'. | 
|  BytesProducedStatsDataset |  Records the bytes size of each element of `input_dataset` in a StatsAggregator. | 
|  CSRSparseMatrixComponents <T extends TType > |  Reads out the CSR components at batch `index`. | 
|  CSRSparseMatrixToDense <T extends TType > |  Convert a (possibly batched) CSRSparseMatrix to dense. | 
|  CSRSparseMatrixToSparseTensor <T extends TType > |  Converts a (possibly batched) CSRSparesMatrix to a SparseTensor. | 
|  CSVDataset  |  | 
|  CSVDatasetV2  |  | 
|  CTCLossV2 |  Calculates the CTC Loss (log probability) for each batch entry. | 
|  CacheDataset |  Creates a dataset that caches elements from `input_dataset`. | 
|  CacheDatasetV2  |  | 
|  Cast <U extends TType > |  Cast x of type SrcT to y of DstT. | 
|  Ceil <T extends TNumber > |  Returns element-wise smallest integer not less than x. | 
|  CheckNumerics <T extends TNumber > |  Checks a tensor for NaN, -Inf and +Inf values. | 
|  Cholesky <T extends TType > |  Computes the Cholesky decomposition of one or more square matrices. | 
|  CholeskyGrad <T extends TNumber > |  Computes the reverse mode backpropagated gradient of the Cholesky algorithm. | 
|  ChooseFastestDataset  |  | 
|  ClipByValue <T extends TType > |  Clips tensor values to a specified min and max. | 
|  CloseSummaryWriter  |  | 
|  ClusterOutput <T extends TType > |  Operator that connects the output of an XLA computation to other consumer graph nodes. | 
|  CollectiveGather <T extends TNumber > |  Mutually accumulates multiple tensors of identical type and shape. | 
|  CollectivePermute <T extends TType > |  An Op to permute tensors across replicated TPU instances. | 
|  CombinedNonMaxSuppression |  Greedily selects a subset of bounding boxes in descending order of score,  This operation performs non_max_suppression on the inputs per batch, across all classes.  | 
|  CompareAndBitpack |  Compare values of `input` to `threshold` and pack resulting bits into a `uint8`. | 
|  CompilationResult |  Returns the result of a TPU compilation. | 
|  CompileSucceededAssert |  Asserts that compilation succeeded. | 
|  Complex <U extends TType > |  Converts two real numbers to a complex number. | 
|  ComplexAbs <U extends TNumber > |  Computes the complex absolute value of a tensor. | 
|  CompressElement |  Compresses a dataset element. | 
|  ComputeAccidentalHits |  Computes the ids of the positions in sampled_candidates that match true_labels. | 
|  ComputeBatchSize |  Computes the static batch size of a dataset sans partial batches. | 
|  Concat <T extends TType > |  Concatenates tensors along one dimension. | 
|  ConcatenateDataset |  Creates a dataset that concatenates `input_dataset` with `another_dataset`. | 
|  ConditionalAccumulator |  A conditional accumulator for aggregating gradients. | 
|  ConfigureDistributedTPU |  Sets up the centralized structures for a distributed TPU system. | 
|  ConfigureTPUEmbedding |  Sets up TPUEmbedding in a distributed TPU system. | 
|  Conj <T extends TType > |  Returns the complex conjugate of a complex number. | 
|  ConjugateTranspose <T extends TType > |  Shuffle dimensions of x according to a permutation and conjugate the result. | 
|  Constant <T extends TType > |  An operator producing a constant value. | 
|  ConsumeMutexLock |  This op consumes a lock created by `MutexLock`. | 
|  ControlTrigger |  Does nothing. | 
|  Conv <T extends TType > |  Wraps the XLA ConvGeneralDilated operator, documented at  https://www.tensorflow.org/performance/xla/operation_semantics#conv_convolution .  | 
|  Conv2d <T extends TNumber > |  Computes a 2-D convolution given 4-D `input` and `filter` tensors. | 
|  Conv2dBackpropFilter <T extends TNumber > |  Computes the gradients of convolution with respect to the filter. | 
|  Conv2dBackpropInput <T extends TNumber > |  Computes the gradients of convolution with respect to the input. | 
|  Conv3d <T extends TNumber > |  Computes a 3-D convolution given 5-D `input` and `filter` tensors. | 
|  Conv3dBackpropFilter <T extends TNumber > |  Computes the gradients of 3-D convolution with respect to the filter. | 
|  Conv3dBackpropInput <U extends TNumber > |  Computes the gradients of 3-D convolution with respect to the input. | 
|  Copy <T extends TType > |  Copy a tensor from CPU-to-CPU or GPU-to-GPU. | 
|  CopyHost <T extends TType > |  Copy a tensor to host. | 
|  Cos <T extends TType > |  Computes cos of x element-wise. | 
|  Cosh <T extends TType > |  Computes hyperbolic cosine of x element-wise. | 
|  CountUpTo <T extends TNumber > |  Increments 'ref' until it reaches 'limit'. | 
|  CreateSummaryDbWriter  |  | 
|  CreateSummaryFileWriter  |  | 
|  CropAndResize |  Extracts crops from the input image tensor and resizes them. | 
|  CropAndResizeGradBoxes |  Computes the gradient of the crop_and_resize op wrt the input boxes tensor. | 
|  CropAndResizeGradImage <T extends TNumber > |  Computes the gradient of the crop_and_resize op wrt the input image tensor. | 
|  Cross <T extends TNumber > |  Compute the pairwise cross product. | 
|  CrossReplicaSum <T extends TNumber > |  An Op to sum inputs across replicated TPU instances. | 
|  CtcBeamSearchDecoder <T extends TNumber > |  Performs beam search decoding on the logits given in input. | 
|  CtcGreedyDecoder <T extends TNumber > |  Performs greedy decoding on the logits given in inputs. | 
|  CtcLoss <T extends TNumber > |  Calculates the CTC Loss (log probability) for each batch entry. | 
|  CudnnRNN <T extends TNumber > |  A RNN backed by cuDNN. | 
|  CudnnRNNBackprop <T extends TNumber > |  Backprop step of CudnnRNNV3. | 
|  CudnnRNNCanonicalToParams <T extends TNumber > |  Converts CudnnRNN params from canonical form to usable form. | 
|  CudnnRNNParamsToCanonical <T extends TNumber > |  Retrieves CudnnRNN params in canonical form. | 
|  CudnnRnnParamsSize <U extends TNumber > |  Computes size of weights that can be used by a Cudnn RNN model. | 
|  Cumprod <T extends TType > |  Compute the cumulative product of the tensor `x` along `axis`. | 
|  Cumsum <T extends TType > |  Compute the cumulative sum of the tensor `x` along `axis`. | 
|  CumulativeLogsumexp <T extends TNumber > |  Compute the cumulative product of the tensor `x` along `axis`. | 
|  DataFormatDimMap <T extends TNumber > |  Returns the dimension index in the destination data format given the one in  the source data format.  | 
|  DataFormatVecPermute <T extends TNumber > |  Permute input tensor from `src_format` to `dst_format`. | 
|  DataServiceDataset  |  | 
|  DatasetCardinality |  Returns the cardinality of `input_dataset`. | 
|  DatasetFromGraph |  Creates a dataset from the given `graph_def`. | 
|  DatasetToGraph |  Returns a serialized GraphDef representing `input_dataset`. | 
|  DatasetToSingleElement |  Outputs the single element from the given dataset. | 
|  DatasetToTFRecord |  Writes the given dataset to the given file using the TFRecord format. | 
|  DatasetToTfRecord |  Writes the given dataset to the given file using the TFRecord format. | 
|  Dawsn <T extends TNumber >  |  | 
|  DebugGradientIdentity <T extends TType > |  Identity op for gradient debugging. | 
|  DebugGradientRefIdentity <T extends TType > |  Identity op for gradient debugging. | 
|  DebugIdentity <T extends TType > |  Debug Identity V2 Op. | 
|  DebugNanCount |  Debug NaN Value Counter Op. | 
|  DebugNumericsSummary <U extends TNumber > |  Debug Numeric Summary V2 Op. | 
|  DecodeAndCropJpeg |  Decode and Crop a JPEG-encoded image to a uint8 tensor. | 
|  DecodeBase64 |  Decode web-safe base64-encoded strings. | 
|  DecodeBmp |  Decode the first frame of a BMP-encoded image to a uint8 tensor. | 
|  DecodeCompressed |  Decompress strings. | 
|  DecodeCsv |  Convert CSV records to tensors. | 
|  DecodeGif |  Decode the frame(s) of a GIF-encoded image to a uint8 tensor. | 
|  DecodeImage <T extends TNumber > |  Function for decode_bmp, decode_gif, decode_jpeg, and decode_png. | 
|  DecodeJpeg |  Decode a JPEG-encoded image to a uint8 tensor. | 
|  DecodeJsonExample |  Convert JSON-encoded Example records to binary protocol buffer strings. | 
|  DecodePaddedRaw <T extends TNumber > |  Reinterpret the bytes of a string as a vector of numbers. | 
|  DecodePng <T extends TNumber > |  Decode a PNG-encoded image to a uint8 or uint16 tensor. | 
|  DecodeProto |  The op extracts fields from a serialized protocol buffers message into tensors. | 
|  DecodeRaw <T extends TType > |  Reinterpret the bytes of a string as a vector of numbers. | 
|  DecodeWav |  Decode a 16-bit PCM WAV file to a float tensor. | 
|  DeepCopy <T extends TType > |  Makes a copy of `x`. | 
|  DeleteIterator |  A container for an iterator resource. | 
|  DeleteMemoryCache  |  | 
|  DeleteMultiDeviceIterator |  A container for an iterator resource. | 
|  DeleteRandomSeedGenerator  |  | 
|  DeleteSeedGenerator  |  | 
|  DeleteSessionTensor |  Delete the tensor specified by its handle in the session. | 
|  DenseBincount <U extends TNumber > |  Counts the number of occurrences of each value in an integer array. | 
|  DenseCountSparseOutput <U extends TNumber > |  Performs sparse-output bin counting for a tf.tensor input. | 
|  DenseToCSRSparseMatrix |  Converts a dense tensor to a (possibly batched) CSRSparseMatrix. | 
|  DenseToDenseSetOperation <T extends TType > |  Applies set operation along last dimension of 2 `Tensor` inputs. | 
|  DenseToSparseBatchDataset |  Creates a dataset that batches input elements into a SparseTensor. | 
|  DenseToSparseSetOperation <T extends TType > |  Applies set operation along last dimension of `Tensor` and `SparseTensor`. | 
|  DepthToSpace <T extends TType > |  DepthToSpace for tensors of type T. | 
|  DepthwiseConv2dNative <T extends TNumber > |  Computes a 2-D depthwise convolution given 4-D `input` and `filter` tensors. | 
|  DepthwiseConv2dNativeBackpropFilter <T extends TNumber > |  Computes the gradients of depthwise convolution with respect to the filter. | 
|  DepthwiseConv2dNativeBackpropInput <T extends TNumber > |  Computes the gradients of depthwise convolution with respect to the input. | 
|  Dequantize |  Takes the packed uint32 input and unpacks the input to uint8 to do  Dequantization on device.  | 
|  DeserializeIterator |  Converts the given variant tensor to an iterator and stores it in the given resource. | 
|  DeserializeManySparse <T extends TType > |  Deserialize and concatenate `SparseTensors` from a serialized minibatch. | 
|  DeserializeSparse <U extends TType > |  Deserialize `SparseTensor` objects. | 
|  DestroyResourceOp |  Deletes the resource specified by the handle. | 
|  DestroyTemporaryVariable <T extends TType > |  Destroys the temporary variable and returns its final value. | 
|  Det <T extends TType > |  Computes the determinant of one or more square matrices. | 
|  DeviceIndex |  Return the index of device the op runs. | 
|  Digamma <T extends TNumber > |  Computes Psi, the derivative of Lgamma (the log of the absolute value of  `Gamma(x)`), element-wise.  | 
|  Dilation2d <T extends TNumber > |  Computes the grayscale dilation of 4-D `input` and 3-D `filter` tensors. | 
|  Dilation2dBackpropFilter <T extends TNumber > |  Computes the gradient of morphological 2-D dilation with respect to the filter. | 
|  Dilation2dBackpropInput <T extends TNumber > |  Computes the gradient of morphological 2-D dilation with respect to the input. | 
|  DirectedInterleaveDataset |  A substitute for `InterleaveDataset` on a fixed list of `N` datasets. | 
|  Div <T extends TType > |  Returns x / y element-wise. | 
|  DivNoNan <T extends TType > |  Returns 0 if the denominator is zero. | 
|  Dot <T extends TType > |  Wraps the XLA DotGeneral operator, documented at  https://www.tensorflow.org/performance/xla/operation_semantics#dotgeneral .  | 
|  DrawBoundingBoxes <T extends TNumber > |  Draw bounding boxes on a batch of images. | 
|  DummyIterationCounter  |  | 
|  DummyMemoryCache  |  | 
|  DummySeedGenerator  |  | 
|  DynamicPartition <T extends TType > |  Partitions `data` into `num_partitions` tensors using indices from `partitions`. | 
|  DynamicSlice <T extends TType > |  Wraps the XLA DynamicSlice operator, documented at  https://www.tensorflow.org/performance/xla/operation_semantics#dynamicslice .  | 
|  DynamicStitch <T extends TType > |  Interleave the values from the `data` tensors into a single tensor. | 
|  DynamicUpdateSlice <T extends TType > |  Wraps the XLA DynamicUpdateSlice operator, documented at  https://www.tensorflow.org/performance/xla/operation_semantics#dynamicupdateslice .  | 
|  EditDistance |  Computes the (possibly normalized) Levenshtein Edit Distance. | 
|  Eig <U extends TType > |  Computes the eigen decomposition of one or more square matrices. | 
|  Einsum <T extends TType > |  An op which supports basic einsum op with 2 inputs and 1 output. | 
|  Elu <T extends TNumber > |  Computes exponential linear: `exp(features) - 1` if < 0, `features` otherwise. | 
|  EluGrad <T extends TNumber > |  Computes gradients for the exponential linear (Elu) operation. | 
|  EmbeddingActivations |  An op enabling differentiation of TPU Embeddings. | 
|  Empty <T extends TType > |  Creates a tensor with the given shape. | 
|  EmptyTensorList |  Creates and returns an empty tensor list. | 
|  EmptyTensorMap |  Creates and returns an empty tensor map. | 
|  EncodeBase64 |  Encode strings into web-safe base64 format. | 
|  EncodeJpeg |  JPEG-encode an image. | 
|  EncodeJpegVariableQuality |  JPEG encode input image with provided compression quality. | 
|  EncodePng |  PNG-encode an image. | 
|  EncodeProto |  The op serializes protobuf messages provided in the input tensors. | 
|  EncodeWav |  Encode audio data using the WAV file format. | 
|  EnqueueTPUEmbeddingIntegerBatch |  An op that enqueues a list of input batch tensors to TPUEmbedding. | 
|  EnqueueTPUEmbeddingRaggedTensorBatch |  Eases the porting of code that uses tf.nn.embedding_lookup(). | 
|  EnqueueTPUEmbeddingSparseBatch |  An op that enqueues TPUEmbedding input indices from a SparseTensor. | 
|  EnqueueTPUEmbeddingSparseTensorBatch |  Eases the porting of code that uses tf.nn.embedding_lookup_sparse(). | 
|  EnsureShape <T extends TType > |  Ensures that the tensor's shape matches the expected shape. | 
|  Enter <T extends TType > |  Creates or finds a child frame, and makes `data` available to the child frame. | 
|  לְהִשְׁתַווֹת |  Returns the truth value of (x == y) element-wise. | 
|  Erf <T extends TNumber > |  Computes the Gauss error function of `x` element-wise. | 
|  Erfc <T extends TNumber > |  Computes the complementary error function of `x` element-wise. | 
|  EuclideanNorm <T extends TType > |  Computes the euclidean norm of elements across dimensions of a tensor. | 
|  לְבַצֵעַ |  Op that loads and executes a TPU program on a TPU device. | 
|  ExecuteAndUpdateVariables |  Op that executes a program with optional in-place variable updates. | 
|  Exit <T extends TType > |  Exits the current frame to its parent frame. | 
|  Exp <T extends TType > |  Computes exponential of x element-wise. | 
|  ExpandDims <T extends TType > |  Inserts a dimension of 1 into a tensor's shape. | 
|  Expint <T extends TNumber >  |  | 
|  Expm1 <T extends TType > |  Computes `exp(x) - 1` element-wise. | 
|  ExtractGlimpse |  Extracts a glimpse from the input tensor. | 
|  ExtractImagePatches <T extends TType > |  Extract `patches` from `images` and put them in the "depth" output dimension. | 
|  ExtractJpegShape <T extends TNumber > |  Extract the shape information of a JPEG-encoded image. | 
|  ExtractVolumePatches <T extends TNumber > |  Extract `patches` from `input` and put them in the `"depth"` output dimension. | 
|  עוּבדָה |  Output a fact about factorials. | 
|  FakeQuantWithMinMaxArgs |  Fake-quantize the 'inputs' tensor, type float to 'outputs' tensor of same type. | 
|  FakeQuantWithMinMaxArgsGradient |  Compute gradients for a FakeQuantWithMinMaxArgs operation. | 
|  FakeQuantWithMinMaxVars |  Fake-quantize the 'inputs' tensor of type float via global float scalars  Fake-quantize the `inputs` tensor of type float via global float scalars `min` and `max` to `outputs` tensor of same shape as `inputs`.  | 
|  FakeQuantWithMinMaxVarsGradient |  Compute gradients for a FakeQuantWithMinMaxVars operation. | 
|  FakeQuantWithMinMaxVarsPerChannel |  Fake-quantize the 'inputs' tensor of type float via per-channel floats  Fake-quantize the `inputs` tensor of type float per-channel and one of the shapes: `[d]`, `[b, d]` `[b, h, w, d]` via per-channel floats `min` and `max` of shape `[d]` to `outputs` tensor of same shape as `inputs`.  | 
|  FakeQuantWithMinMaxVarsPerChannelGradient |  Compute gradients for a FakeQuantWithMinMaxVarsPerChannel operation. | 
|  Fft <T extends TType > |  Fast Fourier transform. | 
|  Fft2d <T extends TType > |  2D fast Fourier transform. | 
|  Fft3d <T extends TType > |  3D fast Fourier transform. | 
|  FifoQueue |  A queue that produces elements in first-in first-out order. | 
|  Fill <U extends TType > |  Creates a tensor filled with a scalar value. | 
|  FilterByLastComponentDataset |  Creates a dataset containing elements of first component of `input_dataset` having true in the last component. | 
|  טְבִיעַת אֶצבָּעוֹת |  Generates fingerprint values. | 
|  FixedLengthRecordDataset  |  | 
|  FixedLengthRecordReader |  A Reader that outputs fixed-length records from a file. | 
|  FixedUnigramCandidateSampler |  Generates labels for candidate sampling with a learned unigram distribution. | 
|  Floor <T extends TNumber > |  Returns element-wise largest integer not greater than x. | 
|  FloorDiv <T extends TType > |  Returns x // y element-wise. | 
|  FloorMod <T extends TNumber > |  Returns element-wise remainder of division. | 
|  FlushSummaryWriter  |  | 
|  FractionalAvgPool <T extends TNumber > |  Performs fractional average pooling on the input. | 
|  FractionalAvgPoolGrad <T extends TNumber > |  Computes gradient of the FractionalAvgPool function. | 
|  FractionalMaxPool <T extends TNumber > |  Performs fractional max pooling on the input. | 
|  FractionalMaxPoolGrad <T extends TNumber > |  Computes gradient of the FractionalMaxPool function. | 
|  FresnelCos <T extends TNumber >  |  | 
|  FresnelSin <T extends TNumber >  |  | 
|  FusedBatchNorm <T extends TNumber , U extends TNumber > |  Batch normalization. | 
|  FusedBatchNormGrad <T extends TNumber , U extends TNumber > |  Gradient for batch normalization. | 
|  FusedPadConv2d <T extends TNumber > |  Performs a padding as a preprocess during a convolution. | 
|  FusedResizeAndPadConv2d <T extends TNumber > |  Performs a resize and padding as a preprocess during a convolution. | 
|  GRUBlockCell <T extends TNumber > |  Computes the GRU cell forward propagation for 1 time step. | 
|  GRUBlockCellGrad <T extends TNumber > |  Computes the GRU cell back-propagation for 1 time step. | 
|  Gather <T extends TType > |  Wraps the XLA Gather operator documented at  https://www.tensorflow.org/xla/operation_semantics#gather  | 
|  GatherNd <T extends TType > |  Gather slices from `params` into a Tensor with shape specified by `indices`. | 
|  GatherV2 <T extends TNumber > |  Mutually accumulates multiple tensors of identical type and shape. | 
|  GenerateBoundingBoxProposals |  This op produces Region of Interests from given bounding boxes(bbox_deltas) encoded wrt anchors according to eq.2 in arXiv:1506.01497  The op selects top `pre_nms_topn` scoring boxes, decodes them with respect to anchors, applies non-maximal suppression on overlapping boxes with higher than `nms_threshold` intersection-over-union (iou) value, discarding boxes where shorter side is less than `min_size`.  | 
|  GenerateVocabRemapping |  Given a path to new and old vocabulary files, returns a remapping Tensor of  length `num_new_vocab`, where `remapping[i]` contains the row number in the old vocabulary that corresponds to row `i` in the new vocabulary (starting at line `new_vocab_offset` and up to `num_new_vocab` entities), or `-1` if entry `i` in the new vocabulary is not in the old vocabulary.  | 
|  GetSessionHandle |  Store the input tensor in the state of the current session. | 
|  GetSessionTensor <T extends TType > |  Get the value of the tensor specified by its handle. | 
|  גדול יותר |  Returns the truth value of (x > y) element-wise. | 
|  GreaterEqual |  Returns the truth value of (x >= y) element-wise. | 
|  GuaranteeConst <T extends TType > |  Gives a guarantee to the TF runtime that the input tensor is a constant. | 
|  HashTable |  Creates a non-initialized hash table. | 
|  HistogramFixedWidth <U extends TNumber > |  Return histogram of values. | 
|  HistogramSummary |  Outputs a `Summary` protocol buffer with a histogram. | 
|  HsvToRgb <T extends TNumber > |  Convert one or more images from HSV to RGB. | 
|  Identity <T extends TType > |  Return a tensor with the same shape and contents as the input tensor or value. | 
|  IdentityN |  Returns a list of tensors with the same shapes and contents as the input  tensors.  | 
|  IdentityReader |  A Reader that outputs the queued work as both the key and value. | 
|  Ifft <T extends TType > |  Inverse fast Fourier transform. | 
|  Ifft2d <T extends TType > |  Inverse 2D fast Fourier transform. | 
|  Ifft3d <T extends TType > |  Inverse 3D fast Fourier transform. | 
|  Igamma <T extends TNumber > |  Compute the lower regularized incomplete Gamma function `P(a, x)`. | 
|  IgammaGradA <T extends TNumber > |  Computes the gradient of `igamma(a, x)` wrt `a`. | 
|  Igammac <T extends TNumber > |  Compute the upper regularized incomplete Gamma function `Q(a, x)`. | 
|  IgnoreErrorsDataset |  Creates a dataset that contains the elements of `input_dataset` ignoring errors. | 
|  Imag <U extends TNumber > |  Returns the imaginary part of a complex number. | 
|  ImageProjectiveTransformV2 <T extends TNumber > |  Applies the given transform to each of the images. | 
|  ImageProjectiveTransformV3 <T extends TNumber > |  Applies the given transform to each of the images. | 
|  ImageSummary |  Outputs a `Summary` protocol buffer with images. | 
|  ImmutableConst <T extends TType > |  Returns immutable tensor from memory region. | 
|  ImportEvent  |  | 
|  InTopK |  Says whether the targets are in the top `K` predictions. | 
|  InfeedDequeue <T extends TType > |  A placeholder op for a value that will be fed into the computation. | 
|  InfeedDequeueTuple |  Fetches multiple values from infeed as an XLA tuple. | 
|  InfeedEnqueue |  An op which feeds a single Tensor value into the computation. | 
|  InfeedEnqueuePrelinearizedBuffer |  An op which enqueues prelinearized buffer into TPU infeed. | 
|  InfeedEnqueueTuple |  Feeds multiple Tensor values into the computation as an XLA tuple. | 
|  Init  |  | 
|  InitializeTable |  Table initializer that takes two tensors for keys and values respectively. | 
|  InitializeTableFromDataset  |  | 
|  InitializeTableFromTextFile |  Initializes a table from a text file. | 
|  InplaceAdd <T extends TType > |  Adds v into specified rows of x. | 
|  InplaceSub <T extends TType > |  Subtracts `v` into specified rows of `x`. | 
|  InplaceUpdate <T extends TType > |  Updates specified rows 'i' with values 'v'. | 
|  Inv <T extends TType > |  Computes the inverse of one or more square invertible matrices or their adjoints (conjugate transposes). | 
|  InvGrad <T extends TType > |  Computes the gradient for the inverse of `x` wrt its input. | 
|  Invert <T extends TNumber > |  Invert (flip) each bit of supported types; for example, type `uint8` value 01010101 becomes 10101010. | 
|  InvertPermutation <T extends TNumber > |  Computes the inverse permutation of a tensor. | 
|  Irfft <U extends TNumber > |  Inverse real-valued fast Fourier transform. | 
|  Irfft2d <U extends TNumber > |  Inverse 2D real-valued fast Fourier transform. | 
|  Irfft3d <U extends TNumber > |  Inverse 3D real-valued fast Fourier transform. | 
|  IsBoostedTreesEnsembleInitialized |  Checks whether a tree ensemble has been initialized. | 
|  IsBoostedTreesQuantileStreamResourceInitialized |  Checks whether a quantile stream has been initialized. | 
|  IsFinite |  Returns which elements of x are finite. | 
|  IsInf |  Returns which elements of x are Inf. | 
|  IsNan |  Returns which elements of x are NaN. | 
|  IsVariableInitialized |  Checks whether a tensor has been initialized. | 
|  IsotonicRegression <U extends TNumber > |  Solves a batch of isotonic regression problems. | 
|  Iterator  |  | 
|  IteratorFromStringHandle  |  | 
|  IteratorGetDevice |  Returns the name of the device on which `resource` has been placed. | 
|  IteratorGetNext |  Gets the next output from the given iterator . | 
|  IteratorGetNextAsOptional |  Gets the next output from the given iterator as an Optional variant. | 
|  IteratorGetNextSync |  Gets the next output from the given iterator. | 
|  IteratorToStringHandle |  Converts the given `resource_handle` representing an iterator to a string. | 
|  לְהִצְטַרֵף |  Joins the strings in the given list of string tensors into one tensor;  with the given separator (default is an empty separator).  | 
|  KMC2ChainInitialization |  Returns the index of a data point that should be added to the seed set. | 
|  KeyValueSort <T extends TNumber , U extends TType > |  Wraps the XLA Sort operator, documented at  https://www.tensorflow.org/performance/xla/operation_semantics#sort .  | 
|  KmeansPlusPlusInitialization |  Selects num_to_sample rows of input using the KMeans++ criterion. | 
|  KthOrderStatistic |  Computes the Kth order statistic of a data set. | 
|  L2Loss <T extends TNumber > |  L2 Loss. | 
|  LMDBDataset |  Creates a dataset that emits the key-value pairs in one or more LMDB files. | 
|  LSTMBlockCell <T extends TNumber > |  Computes the LSTM cell forward propagation for 1 time step. | 
|  LSTMBlockCellGrad <T extends TNumber > |  Computes the LSTM cell backward propagation for 1 timestep. | 
|  LatencyStatsDataset |  Records the latency of producing `input_dataset` elements in a StatsAggregator. | 
|  LeakyRelu <T extends TNumber > |  Computes rectified linear: `max(features, features * alpha)`. | 
|  LeakyReluGrad <T extends TNumber > |  Computes rectified linear gradients for a LeakyRelu operation. | 
|  LearnedUnigramCandidateSampler |  Generates labels for candidate sampling with a learned unigram distribution. | 
|  LeftShift <T extends TNumber > |  Elementwise computes the bitwise left-shift of `x` and `y`. | 
|  פָּחוֹת |  Returns the truth value of (x < y) element-wise. | 
|  LessEqual |  Returns the truth value of (x <= y) element-wise. | 
|  Lgamma <T extends TNumber > |  Computes the log of the absolute value of `Gamma(x)` element-wise. | 
|  LinSpace <T extends TNumber > |  Generates values in an interval. | 
|  LmdbDataset  |  | 
|  LmdbReader |  A Reader that outputs the records from a LMDB file. | 
|  LoadAndRemapMatrix |  Loads a 2-D (matrix) `Tensor` with name `old_tensor_name` from the checkpoint  at `ckpt_path` and potentially reorders its rows and columns using the specified remappings.  | 
|  LoadTPUEmbeddingADAMParameters |  Load ADAM embedding parameters. | 
|  LoadTPUEmbeddingADAMParametersGradAccumDebug |  Load ADAM embedding parameters with debug support. | 
|  LoadTPUEmbeddingAdadeltaParameters |  Load Adadelta embedding parameters. | 
|  LoadTPUEmbeddingAdadeltaParametersGradAccumDebug |  Load Adadelta parameters with debug support. | 
|  LoadTPUEmbeddingAdagradParameters |  Load Adagrad embedding parameters. | 
|  LoadTPUEmbeddingAdagradParametersGradAccumDebug |  Load Adagrad embedding parameters with debug support. | 
|  LoadTPUEmbeddingCenteredRMSPropParameters |  Load centered RMSProp embedding parameters. | 
|  LoadTPUEmbeddingFTRLParameters |  Load FTRL embedding parameters. | 
|  LoadTPUEmbeddingFTRLParametersGradAccumDebug |  Load FTRL embedding parameters with debug support. | 
|  LoadTPUEmbeddingMDLAdagradLightParameters |  Load MDL Adagrad Light embedding parameters. | 
|  LoadTPUEmbeddingMomentumParameters |  Load Momentum embedding parameters. | 
|  LoadTPUEmbeddingMomentumParametersGradAccumDebug |  Load Momentum embedding parameters with debug support. | 
|  LoadTPUEmbeddingProximalAdagradParameters |  Load proximal Adagrad embedding parameters. | 
|  LoadTPUEmbeddingProximalAdagradParametersGradAccumDebug |  Load proximal Adagrad embedding parameters with debug support. | 
|  LoadTPUEmbeddingProximalYogiParameters  |  | 
|  LoadTPUEmbeddingProximalYogiParametersGradAccumDebug  |  | 
|  LoadTPUEmbeddingRMSPropParameters |  Load RMSProp embedding parameters. | 
|  LoadTPUEmbeddingRMSPropParametersGradAccumDebug |  Load RMSProp embedding parameters with debug support. | 
|  LoadTPUEmbeddingStochasticGradientDescentParameters |  Load SGD embedding parameters. | 
|  LoadTPUEmbeddingStochasticGradientDescentParametersGradAccumDebug |  Load SGD embedding parameters. | 
|  LocalResponseNormalization <T extends TNumber > |  Local Response Normalization. | 
|  LocalResponseNormalizationGrad <T extends TNumber > |  Gradients for Local Response Normalization. | 
|  Log <T extends TType > |  Computes natural logarithm of x element-wise. | 
|  Log1p <T extends TType > |  Computes natural logarithm of (1 + x) element-wise. | 
|  LogMatrixDeterminant <T extends TType > |  Computes the sign and the log of the absolute value of the determinant of  one or more square matrices.  | 
|  LogSoftmax <T extends TNumber > |  Computes log softmax activations. | 
|  LogUniformCandidateSampler |  Generates labels for candidate sampling with a log-uniform distribution. | 
|  LogicalAnd |  Returns the truth value of x AND y element-wise. | 
|  LogicalNot |  Returns the truth value of `NOT x` element-wise. | 
|  LogicalOr |  Returns the truth value of x OR y element-wise. | 
|  LookupTableExport <T extends TType , U extends TType > |  Outputs all keys and values in the table. | 
|  LookupTableFind <U extends TType > |  Looks up keys in a table, outputs the corresponding values. | 
|  LookupTableImport |  Replaces the contents of the table with the specified keys and values. | 
|  LookupTableInsert |  Updates the table to associates keys with values. | 
|  LookupTableRemove |  Removes keys and its associated values from a table. | 
|  LookupTableSize |  Computes the number of elements in the given table. | 
|  LoopCond |  Forwards the input to the output. | 
|  לְהוֹרִיד |  Converts all uppercase characters into their respective lowercase replacements. | 
|  LowerBound <U extends TNumber > |  Applies lower_bound(sorted_search_values, values) along each row. | 
|  Lu <T extends TType , U extends TNumber > |  Computes the LU decomposition of one or more square matrices. | 
|  MakeIterator |  Makes a new iterator from the given `dataset` and stores it in `iterator`. | 
|  MakeUnique |  Make all elements in the non-Batch dimension unique, but \"close\" to  their initial value.  | 
|  MapClear |  Op removes all elements in the underlying container. | 
|  MapIncompleteSize |  Op returns the number of incomplete elements in the underlying container. | 
|  MapPeek |  Op peeks at the values at the specified key. | 
|  MapSize |  Op returns the number of elements in the underlying container. | 
|  MapStage |  Stage (key, values) in the underlying container which behaves like a hashtable. | 
|  MapUnstage |  Op removes and returns the values associated with the key  from the underlying container.  | 
|  MapUnstageNoKey |  Op removes and returns a random (key, value)  from the underlying container.  | 
|  MatMul <T extends TType > |  Multiply the matrix "a" by the matrix "b". | 
|  MatchingFiles |  Returns the set of files matching one or more glob patterns. | 
|  MatchingFilesDataset  |  | 
|  MatrixDiag <T extends TType > |  Returns a batched diagonal tensor with given batched diagonal values. | 
|  MatrixDiagPart <T extends TType > |  Returns the batched diagonal part of a batched tensor. | 
|  MatrixDiagPartV3 <T extends TType > |  Returns the batched diagonal part of a batched tensor. | 
|  MatrixDiagV3 <T extends TType > |  Returns a batched diagonal tensor with given batched diagonal values. | 
|  MatrixLogarithm <T extends TType > |  Computes the matrix logarithm of one or more square matrices:  \\(log(exp(A)) = A\\)  This op is only defined for complex matrices.  | 
|  MatrixSetDiag <T extends TType > |  Returns a batched matrix tensor with new batched diagonal values. | 
|  MatrixSolveLs <T extends TType > |  Solves one or more linear least-squares problems. | 
|  Max <T extends TType > |  Computes the maximum of elements across dimensions of a tensor. | 
|  MaxIntraOpParallelismDataset |  Creates a dataset that overrides the maximum intra-op parallelism. | 
|  MaxPool <T extends TType > |  Performs max pooling on the input. | 
|  MaxPool3d <T extends TNumber > |  Performs 3D max pooling on the input. | 
|  MaxPool3dGrad <U extends TNumber > |  Computes gradients of 3D max pooling function. | 
|  MaxPool3dGradGrad <T extends TNumber > |  Computes second-order gradients of the maxpooling function. | 
|  MaxPoolGrad <T extends TNumber > |  Computes gradients of the maxpooling function. | 
|  MaxPoolGradGrad <T extends TNumber > |  Computes second-order gradients of the maxpooling function. | 
|  MaxPoolGradGradWithArgmax <T extends TNumber > |  Computes second-order gradients of the maxpooling function. | 
|  MaxPoolGradWithArgmax <T extends TNumber > |  Computes gradients of the maxpooling function. | 
|  MaxPoolWithArgmax <T extends TNumber , U extends TNumber > |  Performs max pooling on the input and outputs both max values and indices. | 
|  Maximum <T extends TNumber > |  Returns the max of x and y (ie | 
|  Mean <T extends TType > |  Computes the mean of elements across dimensions of a tensor. | 
|  Merge <T extends TType > |  Forwards the value of an available tensor from `inputs` to `output`. | 
|  MergeSummary |  Merges summaries. | 
|  MergeV2Checkpoints |  V2 format specific: merges the metadata files of sharded checkpoints. | 
|  Mfcc |  Transforms a spectrogram into a form that's useful for speech recognition. | 
|  Min <T extends TType > |  Computes the minimum of elements across dimensions of a tensor. | 
|  Minimum <T extends TNumber > |  Returns the min of x and y (ie | 
|  MirrorPad <T extends TType > |  Pads a tensor with mirrored values. | 
|  MirrorPadGrad <T extends TType > |  Gradient op for `MirrorPad` op. | 
|  MlirPassthroughOp |  Wraps an arbitrary MLIR computation expressed as a module with a main() function. | 
|  Mod <T extends TNumber > |  Returns element-wise remainder of division. | 
|  ModelDataset |  Identity transformation that models performance. | 
|  Mul <T extends TType > |  Returns x * y element-wise. | 
|  MulNoNan <T extends TType > |  Returns x * y element-wise. | 
|  MultiDeviceIterator |  Creates a MultiDeviceIterator resource. | 
|  MultiDeviceIteratorFromStringHandle |  Generates a MultiDeviceIterator resource from its provided string handle. | 
|  MultiDeviceIteratorGetNextFromShard |  Gets next element for the provided shard number. | 
|  MultiDeviceIteratorInit |  Initializes the multi device iterator with the given dataset. | 
|  MultiDeviceIteratorToStringHandle |  Produces a string handle for the given MultiDeviceIterator. | 
|  Multinomial <U extends TNumber > |  Draws samples from a multinomial distribution. | 
|  MutableDenseHashTable |  Creates an empty hash table that uses tensors as the backing store. | 
|  MutableHashTable |  Creates an empty hash table. | 
|  MutableHashTableOfTensors |  Creates an empty hash table. | 
|  Mutex |  Creates a Mutex resource that can be locked by `MutexLock`. | 
|  MutexLock |  Locks a mutex resource. | 
|  NcclAllReduce <T extends TNumber > |  Outputs a tensor containing the reduction across all input tensors. | 
|  NcclBroadcast <T extends TNumber > |  Sends `input` to all devices that are connected to the output. | 
|  NcclReduce <T extends TNumber > |  Reduces `input` from `num_devices` using `reduction` to a single device. | 
|  Ndtri <T extends TNumber >  |  | 
|  NearestNeighbors |  Selects the k nearest centers for each point. | 
|  Neg <T extends TType > |  Computes numerical negative value element-wise. | 
|  NegTrain |  Training via negative sampling. | 
|  NextAfter <T extends TNumber > |  Returns the next representable value of `x1` in the direction of `x2`, element-wise. | 
|  NextIteration <T extends TType > |  Makes its input available to the next iteration. | 
|  NoOp |  Does nothing. | 
|  NonDeterministicInts <U extends TType > |  Non-deterministically generates some integers. | 
|  NonMaxSuppression <T extends TNumber > |  Greedily selects a subset of bounding boxes in descending order of score,  pruning away boxes that have high intersection-over-union (IOU) overlap with previously selected boxes.  | 
|  NonMaxSuppressionWithOverlaps |  Greedily selects a subset of bounding boxes in descending order of score,  pruning away boxes that have high overlaps with previously selected boxes.  | 
|  NonSerializableDataset  |  | 
|  NotEqual |  Returns the truth value of (x != y) element-wise. | 
|  NthElement <T extends TNumber > |  Finds values of the `n`-th order statistic for the last dimension. | 
|  OneHot <U extends TType > |  Returns a one-hot tensor. | 
|  OnesLike <T extends TType > |  Returns a tensor of ones with the same shape and type as x. | 
|  OptimizeDataset |  Creates a dataset by applying optimizations to `input_dataset`. | 
|  OptimizeDatasetV2 |  Creates a dataset by applying related optimizations to `input_dataset`. | 
|  OptionalFromValue |  Constructs an Optional variant from a tuple of tensors. | 
|  OptionalGetValue |  Returns the value stored in an Optional variant or raises an error if none exists. | 
|  OptionalHasValue |  Returns true if and only if the given Optional variant has a value. | 
|  OptionalNone |  Creates an Optional variant with no value. | 
|  OrderedMapClear |  Op removes all elements in the underlying container. | 
|  OrderedMapIncompleteSize |  Op returns the number of incomplete elements in the underlying container. | 
|  OrderedMapPeek |  Op peeks at the values at the specified key. | 
|  OrderedMapSize |  Op returns the number of elements in the underlying container. | 
|  OrderedMapStage |  Stage (key, values) in the underlying container which behaves like a ordered  associative container.  | 
|  OrderedMapUnstage |  Op removes and returns the values associated with the key  from the underlying container.  | 
|  OrderedMapUnstageNoKey |  Op removes and returns the (key, value) element with the smallest  key from the underlying container.  | 
|  OrdinalSelector |  A TPU core selector Op. | 
|  OutfeedDequeue <T extends TType > |  Retrieves a single tensor from the computation outfeed. | 
|  OutfeedDequeueTuple |  Retrieve multiple values from the computation outfeed. | 
|  OutfeedDequeueTupleV2 |  Retrieve multiple values from the computation outfeed. | 
|  OutfeedDequeueV2 <T extends TType > |  Retrieves a single tensor from the computation outfeed. | 
|  OutfeedEnqueue |  Enqueue a Tensor on the computation outfeed. | 
|  OutfeedEnqueueTuple |  Enqueue multiple Tensor values on the computation outfeed. | 
|  Pad <T extends TType > |  Wraps the XLA Pad operator, documented at  https://www.tensorflow.org/performance/xla/operation_semantics#pad .  | 
|  PaddedBatchDataset |  Creates a dataset that batches and pads `batch_size` elements from the input. | 
|  PaddingFifoQueue |  A queue that produces elements in first-in first-out order. | 
|  ParallelConcat <T extends TType > |  Concatenates a list of `N` tensors along the first dimension. | 
|  ParallelDynamicStitch <T extends TType > |  Interleave the values from the `data` tensors into a single tensor. | 
|  ParameterizedTruncatedNormal <U extends TNumber > |  Outputs random values from a normal distribution. | 
|  ParseExample |  Transforms a vector of tf.Example protos (as strings) into typed tensors. | 
|  ParseExampleDataset |  Transforms `input_dataset` containing `Example` protos as vectors of DT_STRING into a dataset of `Tensor` or `SparseTensor` objects representing the parsed features. | 
|  ParseSequenceExample |  Transforms a vector of tf.io.SequenceExample protos (as strings) into typed tensors. | 
|  ParseSingleExample |  Transforms a tf.Example proto (as a string) into typed tensors. | 
|  ParseSingleSequenceExample |  Transforms a scalar brain.SequenceExample proto (as strings) into typed tensors. | 
|  ParseTensor <T extends TType > |  Transforms a serialized tensorflow.TensorProto proto into a Tensor. | 
|  PartitionedInput <T extends TType > |  An op that groups a list of partitioned inputs together. | 
|  PartitionedOutput <T extends TType > |  An op that demultiplexes a tensor to be sharded by XLA to a list of partitioned  outputs outside the XLA computation.  | 
|  Placeholder <T extends TType > |  A placeholder op for a value that will be fed into the computation. | 
|  PlaceholderWithDefault <T extends TType > |  A placeholder op that passes through `input` when its output is not fed. | 
|  Polygamma <T extends TNumber > |  Compute the polygamma function \\(\psi^{(n)}(x)\\). | 
|  PopulationCount |  Computes element-wise population count (aka | 
|  Pow <T extends TType > |  Computes the power of one value to another. | 
|  PrefetchDataset |  Creates a dataset that asynchronously prefetches elements from `input_dataset`. | 
|  Prelinearize |  An op which linearizes one Tensor value to an opaque variant tensor. | 
|  PrelinearizeTuple |  An op which linearizes multiple Tensor values to an opaque variant tensor. | 
|  PreventGradient <T extends TType > |  An identity op that triggers an error if a gradient is requested. | 
|  הֶדפֵּס |  Prints a string scalar. | 
|  PriorityQueue |  A queue that produces elements sorted by the first component value. | 
|  PrivateThreadPoolDataset |  Creates a dataset that uses a custom thread pool to compute `input_dataset`. | 
|  Prod <T extends TType > |  Computes the product of elements across dimensions of a tensor. | 
|  Qr <T extends TType > |  Computes the QR decompositions of one or more matrices. | 
|  Quantize <T extends TType > |  Quantize the 'input' tensor of type float to 'output' tensor of type 'T'. | 
|  QuantizeAndDequantize <T extends TNumber > |  Quantizes then dequantizes a tensor. | 
|  QuantizeAndDequantizeV3 <T extends TNumber > |  Quantizes then dequantizes a tensor. | 
|  QuantizeAndDequantizeV4 <T extends TNumber > |  Returns the gradient of `quantization.QuantizeAndDequantizeV4`. | 
|  QuantizeAndDequantizeV4Grad <T extends TNumber > |  Returns the gradient of `QuantizeAndDequantizeV4`. | 
|  QuantizeDownAndShrinkRange <U extends TType > |  Convert the quantized 'input' tensor into a lower-precision 'output', using the  actual distribution of the values to maximize the usage of the lower bit depth and adjusting the output min and max ranges accordingly.  | 
|  QuantizedAdd <V extends TType > |  Returns x + y element-wise, working on quantized buffers. | 
|  QuantizedAvgPool <T extends TType > |  Produces the average pool of the input tensor for quantized types. | 
|  QuantizedBatchNormWithGlobalNormalization <U extends TType > |  Quantized Batch normalization. | 
|  QuantizedBiasAdd <V extends TType > |  Adds Tensor 'bias' to Tensor 'input' for Quantized types. | 
|  QuantizedConcat <T extends TType > |  Concatenates quantized tensors along one dimension. | 
|  QuantizedConv2DAndRelu <V extends TType >  |  | 
|  QuantizedConv2DAndReluAndRequantize <V extends TType >  |  | 
|  QuantizedConv2DAndRequantize <V extends TType >  |  | 
|  QuantizedConv2DPerChannel <V extends TType > |  Computes QuantizedConv2D per channel. | 
|  QuantizedConv2DWithBias <V extends TType >  |  | 
|  QuantizedConv2DWithBiasAndRelu <V extends TType >  |  | 
|  QuantizedConv2DWithBiasAndReluAndRequantize <W extends TType >  |  | 
|  QuantizedConv2DWithBiasAndRequantize <W extends TType >  |  | 
|  QuantizedConv2DWithBiasSignedSumAndReluAndRequantize <X extends TType >  |  | 
|  QuantizedConv2DWithBiasSumAndRelu <V extends TType >  |  | 
|  QuantizedConv2DWithBiasSumAndReluAndRequantize <X extends TType >  |  | 
|  QuantizedConv2d <V extends TType > |  Computes a 2D convolution given quantized 4D input and filter tensors. | 
|  QuantizedDepthwiseConv2D <V extends TType > |  Computes quantized depthwise Conv2D. | 
|  QuantizedDepthwiseConv2DWithBias <V extends TType > |  Computes quantized depthwise Conv2D with Bias. | 
|  QuantizedDepthwiseConv2DWithBiasAndRelu <V extends TType > |  Computes quantized depthwise Conv2D with Bias and Relu. | 
|  QuantizedDepthwiseConv2DWithBiasAndReluAndRequantize <W extends TType > |  Computes quantized depthwise Conv2D with Bias, Relu and Requantize. | 
|  QuantizedInstanceNorm <T extends TType > |  Quantized Instance normalization. | 
|  QuantizedMatMul <V extends TType > |  Perform a quantized matrix multiplication of `a` by the matrix `b`. | 
|  QuantizedMatMulWithBias <W extends TType > |  Performs a quantized matrix multiplication of `a` by the matrix `b` with bias add. | 
|  QuantizedMatMulWithBiasAndDequantize <W extends TNumber >  |  | 
|  QuantizedMatMulWithBiasAndRelu <V extends TType > |  Perform a quantized matrix multiplication of `a` by the matrix `b` with bias add and relu fusion. | 
|  QuantizedMatMulWithBiasAndReluAndRequantize <W extends TType > |  Perform a quantized matrix multiplication of `a` by the matrix `b` with bias add and relu and requantize fusion. | 
|  QuantizedMatMulWithBiasAndRequantize <W extends TType >  |  | 
|  QuantizedMaxPool <T extends TType > |  Produces the max pool of the input tensor for quantized types. | 
|  QuantizedMul <V extends TType > |  Returns x * y element-wise, working on quantized buffers. | 
|  QuantizedRelu <U extends TType > |  Computes Quantized Rectified Linear: `max(features, 0)` | 
|  QuantizedRelu6 <U extends TType > |  Computes Quantized Rectified Linear 6: `min(max(features, 0), 6)` | 
|  QuantizedReluX <U extends TType > |  Computes Quantized Rectified Linear X: `min(max(features, 0), max_value)` | 
|  QuantizedReshape <T extends TType > |  Reshapes a quantized tensor as per the Reshape op. | 
|  QuantizedResizeBilinear <T extends TType > |  Resize quantized `images` to `size` using quantized bilinear interpolation. | 
|  QueueClose |  Closes the given queue. | 
|  QueueDequeue |  Dequeues a tuple of one or more tensors from the given queue. | 
|  QueueDequeueMany |  Dequeues `n` tuples of one or more tensors from the given queue. | 
|  QueueDequeueUpTo |  Dequeues `n` tuples of one or more tensors from the given queue. | 
|  QueueEnqueue |  Enqueues a tuple of one or more tensors in the given queue. | 
|  QueueEnqueueMany |  Enqueues zero or more tuples of one or more tensors in the given queue. | 
|  QueueIsClosed |  Returns true if queue is closed. | 
|  QueueSize |  Computes the number of elements in the given queue. | 
|  RaggedBincount <U extends TNumber > |  Counts the number of occurrences of each value in an integer array. | 
|  RaggedCountSparseOutput <U extends TNumber > |  Performs sparse-output bin counting for a ragged tensor input. | 
|  RaggedCross <T extends TType , U extends TNumber > |  Generates a feature cross from a list of tensors, and returns it as a RaggedTensor. | 
|  RaggedGather <T extends TNumber , U extends TType > |  Gather ragged slices from `params` axis `0` according to `indices`. | 
|  RaggedRange <U extends TNumber , T extends TNumber > |  Returns a `RaggedTensor` containing the specified sequences of numbers. | 
|  RaggedTensorFromVariant <U extends TNumber , T extends TType > |  Decodes a `variant` Tensor into a `RaggedTensor`. | 
|  RaggedTensorToSparse <U extends TType > |  Converts a `RaggedTensor` into a `SparseTensor` with the same values. | 
|  RaggedTensorToTensor <U extends TType > |  Create a dense tensor from a ragged tensor, possibly altering its shape. | 
|  RaggedTensorToVariant |  Encodes a `RaggedTensor` into a `variant` Tensor. | 
|  RaggedTensorToVariantGradient <U extends TType > |  Helper used to compute the gradient for `RaggedTensorToVariant`. | 
|  RandomCrop <T extends TNumber > |  Randomly crop `image`. | 
|  RandomDataset |  Creates a Dataset that returns pseudorandom numbers. | 
|  RandomGamma <U extends TNumber > |  Outputs random values from the Gamma distribution(s) described by alpha. | 
|  RandomGammaGrad <T extends TNumber > |  Computes the derivative of a Gamma random sample wrt | 
|  RandomPoisson <V extends TNumber > |  Outputs random values from the Poisson distribution(s) described by rate. | 
|  RandomShuffle <T extends TType > |  Randomly shuffles a tensor along its first dimension. | 
|  RandomShuffleQueue |  A queue that randomizes the order of elements. | 
|  RandomStandardNormal <U extends TNumber > |  Outputs random values from a normal distribution. | 
|  RandomUniform <U extends TNumber > |  Outputs random values from a uniform distribution. | 
|  RandomUniformInt <U extends TNumber > |  Outputs random integers from a uniform distribution. | 
|  Range <T extends TNumber > |  Creates a sequence of numbers. | 
|  RangeDataset |  Creates a dataset with a range of values. | 
|  דַרגָה |  Returns the rank of a tensor. | 
|  ReadFile |  Reads and outputs the entire contents of the input filename. | 
|  ReadVariableOp <T extends TType > |  Reads the value of a variable. | 
|  ReaderNumRecordsProduced |  Returns the number of records this Reader has produced. | 
|  ReaderNumWorkUnitsCompleted |  Returns the number of work units this Reader has finished processing. | 
|  ReaderRead |  Returns the next record (key, value pair) produced by a Reader. | 
|  ReaderReadUpTo |  Returns up to `num_records` (key, value) pairs produced by a Reader. | 
|  ReaderReset |  Restore a Reader to its initial clean state. | 
|  ReaderRestoreState |  Restore a reader to a previously saved state. | 
|  ReaderSerializeState |  Produce a string tensor that encodes the state of a Reader. | 
|  Real <U extends TNumber > |  Returns the real part of a complex number. | 
|  RealDiv <T extends TType > |  Returns x / y element-wise for real types. | 
|  RebatchDataset |  Creates a dataset that changes the batch size. | 
|  RebatchDatasetV2 |  Creates a dataset that changes the batch size. | 
|  Reciprocal <T extends TType > |  Computes the reciprocal of x element-wise. | 
|  ReciprocalGrad <T extends TType > |  Computes the gradient for the inverse of `x` wrt its input. | 
|  RecordInput |  Emits randomized records. | 
|  Recv <T extends TType > |  Receives the named tensor from another XLA computation. | 
|  RecvTPUEmbeddingActivations |  An op that receives embedding activations on the TPU. | 
|  Reduce <T extends TNumber > |  Mutually reduces multiple tensors of identical type and shape. | 
|  ReduceAll |  Computes the "logical and" of elements across dimensions of a tensor. | 
|  ReduceAny |  Computes the "logical or" of elements across dimensions of a tensor. | 
|  ReduceJoin |  Joins a string Tensor across the given dimensions. | 
|  ReduceMax <T extends TType > |  Computes the maximum of elements across dimensions of a tensor. | 
|  ReduceMin <T extends TType > |  Computes the minimum of elements across dimensions of a tensor. | 
|  ReduceProd <T extends TType > |  Computes the product of elements across dimensions of a tensor. | 
|  ReduceSum <T extends TType > |  Computes the sum of elements across dimensions of a tensor. | 
|  ReduceV2 <T extends TNumber > |  Mutually reduces multiple tensors of identical type and shape. | 
|  RefEnter <T extends TType > |  Creates or finds a child frame, and makes `data` available to the child frame. | 
|  RefExit <T extends TType > |  Exits the current frame to its parent frame. | 
|  RefIdentity <T extends TType > |  Return the same ref tensor as the input ref tensor. | 
|  RefMerge <T extends TType > |  Forwards the value of an available tensor from `inputs` to `output`. | 
|  RefNextIteration <T extends TType > |  Makes its input available to the next iteration. | 
|  RefSelect <T extends TType > |  Forwards the `index`th element of `inputs` to `output`. | 
|  RefSwitch <T extends TType > |  Forwards the ref tensor `data` to the output port determined by `pred`. | 
|  RegexFullMatch |  Check if the input matches the regex pattern. | 
|  RegexReplace |  Replaces matches of the `pattern` regular expression in `input` with the replacement string provided in `rewrite`. | 
|  RegisterDataset |  Registers a dataset with the tf.data service. | 
|  Relu <T extends TType > |  Computes rectified linear: `max(features, 0)`. | 
|  Relu6 <T extends TNumber > |  Computes rectified linear 6: `min(max(features, 0), 6)`. | 
|  Relu6Grad <T extends TNumber > |  Computes rectified linear 6 gradients for a Relu6 operation. | 
|  ReluGrad <T extends TNumber > |  Computes rectified linear gradients for a Relu operation. | 
|  RemoteFusedGraphExecute |  Execute a sub graph on a remote processor. | 
|  RepeatDataset |  Creates a dataset that emits the outputs of `input_dataset` `count` times. | 
|  ReplicaId |  Replica ID. | 
|  ReplicateMetadata |  Metadata indicating how the TPU computation should be replicated. | 
|  ReplicatedInput <T extends TType > |  Connects N inputs to an N-way replicated TPU computation. | 
|  ReplicatedOutput <T extends TType > |  Connects N outputs from an N-way replicated TPU computation. | 
|  RequantizationRange |  Computes a range that covers the actual values present in a quantized tensor. | 
|  RequantizationRangePerChannel |  Computes requantization range per channel. | 
|  Requantize <U extends TType > |  Converts the quantized `input` tensor into a lower-precision `output`. | 
|  RequantizePerChannel <U extends TType > |  Requantizes input with min and max values known per channel. | 
|  Reshape <T extends TType > |  Reshapes a tensor. | 
|  ResizeArea |  Resize `images` to `size` using area interpolation. | 
|  ResizeBicubic |  Resize `images` to `size` using bicubic interpolation. | 
|  ResizeBicubicGrad <T extends TNumber > |  Computes the gradient of bicubic interpolation. | 
|  ResizeBilinear |  Resize `images` to `size` using bilinear interpolation. | 
|  ResizeBilinearGrad <T extends TNumber > |  Computes the gradient of bilinear interpolation. | 
|  ResizeNearestNeighbor <T extends TNumber > |  Resize `images` to `size` using nearest neighbor interpolation. | 
|  ResizeNearestNeighborGrad <T extends TNumber > |  Computes the gradient of nearest neighbor interpolation. | 
|  ResourceAccumulatorApplyGradient |  Applies a gradient to a given accumulator. | 
|  ResourceAccumulatorNumAccumulated |  Returns the number of gradients aggregated in the given accumulators. | 
|  ResourceAccumulatorSetGlobalStep |  Updates the accumulator with a new value for global_step. | 
|  ResourceAccumulatorTakeGradient <T extends TType > |  Extracts the average gradient in the given ConditionalAccumulator. | 
|  ResourceApplyAdaMax |  Update '*var' according to the AdaMax algorithm. | 
|  ResourceApplyAdadelta |  Update '*var' according to the adadelta scheme. | 
|  ResourceApplyAdagrad |  Update '*var' according to the adagrad scheme. | 
|  ResourceApplyAdagradDa |  Update '*var' according to the proximal adagrad scheme. | 
|  ResourceApplyAdam |  Update '*var' according to the Adam algorithm. | 
|  ResourceApplyAdamWithAmsgrad |  Update '*var' according to the Adam algorithm. | 
|  ResourceApplyAddSign |  Update '*var' according to the AddSign update. | 
|  ResourceApplyCenteredRmsProp |  Update '*var' according to the centered RMSProp algorithm. | 
|  ResourceApplyFtrl |  Update '*var' according to the Ftrl-proximal scheme. | 
|  ResourceApplyGradientDescent |  Update '*var' by subtracting 'alpha' * 'delta' from it. | 
|  ResourceApplyKerasMomentum |  Update '*var' according to the momentum scheme. | 
|  ResourceApplyMomentum |  Update '*var' according to the momentum scheme. | 
|  ResourceApplyPowerSign |  Update '*var' according to the AddSign update. | 
|  ResourceApplyProximalAdagrad |  Update '*var' and '*accum' according to FOBOS with Adagrad learning rate. | 
|  ResourceApplyProximalGradientDescent |  Update '*var' as FOBOS algorithm with fixed learning rate. | 
|  ResourceApplyRmsProp |  Update '*var' according to the RMSProp algorithm. | 
|  ResourceConditionalAccumulator |  A conditional accumulator for aggregating gradients. | 
|  ResourceCountUpTo <T extends TNumber > |  Increments variable pointed to by 'resource' until it reaches 'limit'. | 
|  ResourceGather <U extends TType > |  Gather slices from the variable pointed to by `resource` according to `indices`. | 
|  ResourceGatherNd <U extends TType >  |  | 
|  ResourceScatterAdd |  Adds sparse updates to the variable referenced by `resource`. | 
|  ResourceScatterDiv |  Divides sparse updates into the variable referenced by `resource`. | 
|  ResourceScatterMax |  Reduces sparse updates into the variable referenced by `resource` using the `max` operation. | 
|  ResourceScatterMin |  Reduces sparse updates into the variable referenced by `resource` using the `min` operation. | 
|  ResourceScatterMul |  Multiplies sparse updates into the variable referenced by `resource`. | 
|  ResourceScatterNdAdd |  Applies sparse addition to individual values or slices in a Variable. | 
|  ResourceScatterNdMax  |  | 
|  ResourceScatterNdMin  |  | 
|  ResourceScatterNdSub |  Applies sparse subtraction to individual values or slices in a Variable. | 
|  ResourceScatterNdUpdate |  Applies sparse `updates` to individual values or slices within a given  variable according to `indices`.  | 
|  ResourceScatterSub |  Subtracts sparse updates from the variable referenced by `resource`. | 
|  ResourceScatterUpdate |  Assigns sparse updates to the variable referenced by `resource`. | 
|  ResourceSparseApplyAdadelta |  var: Should be from a Variable(). | 
|  ResourceSparseApplyAdagrad |  Update relevant entries in '*var' and '*accum' according to the adagrad scheme. | 
|  ResourceSparseApplyAdagradDa |  Update entries in '*var' and '*accum' according to the proximal adagrad scheme. | 
|  ResourceSparseApplyAdagradV2 |  Update relevant entries in '*var' and '*accum' according to the adagrad scheme. | 
|  ResourceSparseApplyCenteredRmsProp |  Update '*var' according to the centered RMSProp algorithm. | 
|  ResourceSparseApplyFtrl |  Update relevant entries in '*var' according to the Ftrl-proximal scheme. | 
|  ResourceSparseApplyKerasMomentum |  Update relevant entries in '*var' and '*accum' according to the momentum scheme. | 
|  ResourceSparseApplyMomentum |  Update relevant entries in '*var' and '*accum' according to the momentum scheme. | 
|  ResourceSparseApplyProximalAdagrad |  Sparse update entries in '*var' and '*accum' according to FOBOS algorithm. | 
|  ResourceSparseApplyProximalGradientDescent |  Sparse update '*var' as FOBOS algorithm with fixed learning rate. | 
|  ResourceSparseApplyRmsProp |  Update '*var' according to the RMSProp algorithm. | 
|  ResourceStridedSliceAssign |  Assign `value` to the sliced l-value reference of `ref`. | 
|  לְשַׁחְזֵר |  Restores tensors from a V2 checkpoint. | 
|  RestoreSlice <T extends TType > |  Restores a tensor from checkpoint files. | 
|  RetrieveTPUEmbeddingADAMParameters |  Retrieve ADAM embedding parameters. | 
|  RetrieveTPUEmbeddingADAMParametersGradAccumDebug |  Retrieve ADAM embedding parameters with debug support. | 
|  RetrieveTPUEmbeddingAdadeltaParameters |  Retrieve Adadelta embedding parameters. | 
|  RetrieveTPUEmbeddingAdadeltaParametersGradAccumDebug |  Retrieve Adadelta embedding parameters with debug support. | 
|  RetrieveTPUEmbeddingAdagradParameters |  Retrieve Adagrad embedding parameters. | 
|  RetrieveTPUEmbeddingAdagradParametersGradAccumDebug |  Retrieve Adagrad embedding parameters with debug support. | 
|  RetrieveTPUEmbeddingCenteredRMSPropParameters |  Retrieve centered RMSProp embedding parameters. | 
|  RetrieveTPUEmbeddingFTRLParameters |  Retrieve FTRL embedding parameters. | 
|  RetrieveTPUEmbeddingFTRLParametersGradAccumDebug |  Retrieve FTRL embedding parameters with debug support. | 
|  RetrieveTPUEmbeddingMDLAdagradLightParameters |  Retrieve MDL Adagrad Light embedding parameters. | 
|  RetrieveTPUEmbeddingMomentumParameters |  Retrieve Momentum embedding parameters. | 
|  RetrieveTPUEmbeddingMomentumParametersGradAccumDebug |  Retrieve Momentum embedding parameters with debug support. | 
|  RetrieveTPUEmbeddingProximalAdagradParameters |  Retrieve proximal Adagrad embedding parameters. | 
|  RetrieveTPUEmbeddingProximalAdagradParametersGradAccumDebug |  Retrieve proximal Adagrad embedding parameters with debug support. | 
|  RetrieveTPUEmbeddingProximalYogiParameters  |  | 
|  RetrieveTPUEmbeddingProximalYogiParametersGradAccumDebug  |  | 
|  RetrieveTPUEmbeddingRMSPropParameters |  Retrieve RMSProp embedding parameters. | 
|  RetrieveTPUEmbeddingRMSPropParametersGradAccumDebug |  Retrieve RMSProp embedding parameters with debug support. | 
|  RetrieveTPUEmbeddingStochasticGradientDescentParameters |  Retrieve SGD embedding parameters. | 
|  RetrieveTPUEmbeddingStochasticGradientDescentParametersGradAccumDebug |  Retrieve SGD embedding parameters with debug support. | 
|  Reverse <T extends TType > |  Reverses specific dimensions of a tensor. | 
|  ReverseSequence <T extends TType > |  Reverses variable length slices. | 
|  Rfft <U extends TType > |  Real-valued fast Fourier transform. | 
|  Rfft2d <U extends TType > |  2D real-valued fast Fourier transform. | 
|  Rfft3d <U extends TType > |  3D real-valued fast Fourier transform. | 
|  RgbToHsv <T extends TNumber > |  Converts one or more images from RGB to HSV. | 
|  RightShift <T extends TNumber > |  Elementwise computes the bitwise right-shift of `x` and `y`. | 
|  Rint <T extends TNumber > |  Returns element-wise integer closest to x. | 
|  RngReadAndSkip |  Advance the counter of a counter-based RNG. | 
|  RngSkip |  Advance the counter of a counter-based RNG. | 
|  Roll <T extends TType > |  Rolls the elements of a tensor along an axis. | 
|  Round <T extends TType > |  Rounds the values of a tensor to the nearest integer, element-wise. | 
|  Rpc |  Perform batches of RPC requests. | 
|  Rsqrt <T extends TType > |  Computes reciprocal of square root of x element-wise. | 
|  RsqrtGrad <T extends TType > |  Computes the gradient for the rsqrt of `x` wrt its input. | 
|  SampleDistortedBoundingBox <T extends TNumber > |  Generate a single randomly distorted bounding box for an image. | 
|  SamplingDataset |  Creates a dataset that takes a Bernoulli sample of the contents of another dataset. | 
|  לְהַצִיל |  Saves tensors in V2 checkpoint format. | 
|  SaveSlices |  Saves input tensors slices to disk. | 
|  ScalarSummary |  Outputs a `Summary` protocol buffer with scalar values. | 
|  ScaleAndTranslate  |  | 
|  ScaleAndTranslateGrad <T extends TNumber >  |  | 
|  ScatterAdd <T extends TType > |  Adds sparse updates to a variable reference. | 
|  ScatterDiv <T extends TType > |  Divides a variable reference by sparse updates. | 
|  ScatterMax <T extends TNumber > |  Reduces sparse updates into a variable reference using the `max` operation. | 
|  ScatterMin <T extends TNumber > |  Reduces sparse updates into a variable reference using the `min` operation. | 
|  ScatterMul <T extends TType > |  Multiplies sparse updates into a variable reference. | 
|  ScatterNd <U extends TType > |  Scatter `updates` into a new tensor according to `indices`. | 
|  ScatterNdAdd <T extends TType > |  Applies sparse addition to individual values or slices in a Variable. | 
|  ScatterNdMax <T extends TType > |  Computes element-wise maximum. | 
|  ScatterNdMin <T extends TType > |  Computes element-wise minimum. | 
|  ScatterNdNonAliasingAdd <T extends TType > |  Applies sparse addition to `input` using individual values or slices  from `updates` according to indices `indices`.  | 
|  ScatterNdSub <T extends TType > |  Applies sparse subtraction to individual values or slices in a Variable. | 
|  ScatterNdUpdate <T extends TType > |  Applies sparse `updates` to individual values or slices within a given  variable according to `indices`.  | 
|  ScatterSub <T extends TType > |  Subtracts sparse updates to a variable reference. | 
|  ScatterUpdate <T extends TType > |  Applies sparse updates to a variable reference. | 
|  SdcaFprint |  Computes fingerprints of the input strings. | 
|  SdcaOptimizer |  Distributed version of Stochastic Dual Coordinate Ascent (SDCA) optimizer for  linear models with L1 + L2 regularization.  | 
|  SdcaShrinkL1 |  Applies L1 regularization shrink step on the parameters. | 
|  SegmentMax <T extends TNumber > |  Computes the maximum along segments of a tensor. | 
|  SegmentMean <T extends TType > |  Computes the mean along segments of a tensor. | 
|  SegmentMin <T extends TNumber > |  Computes the minimum along segments of a tensor. | 
|  SegmentProd <T extends TType > |  Computes the product along segments of a tensor. | 
|  SegmentSum <T extends TType > |  Computes the sum along segments of a tensor. | 
|  Select <T extends TType >  |  | 
|  SelfAdjointEig <T extends TType > |  Computes the eigen decomposition of a batch of self-adjoint matrices  (Note: Only real inputs are supported).  | 
|  Selu <T extends TNumber > |  Computes scaled exponential linear: `scale * alpha * (exp(features) - 1)`  if < 0, `scale * features` otherwise.  | 
|  SeluGrad <T extends TNumber > |  Computes gradients for the scaled exponential linear (Selu) operation. | 
|  לִשְׁלוֹחַ |  Sends the named tensor to another XLA computation. | 
|  SendTPUEmbeddingGradients |  Performs gradient updates of embedding tables. | 
|  SerializeIterator |  Converts the given `resource_handle` representing an iterator to a variant tensor. | 
|  SerializeManySparse <U extends TType > |  Serialize an `N`-minibatch `SparseTensor` into an `[N, 3]` `Tensor` object. | 
|  SerializeSparse <U extends TType > |  Serialize a `SparseTensor` into a `[3]` `Tensor` object. | 
|  SerializeTensor |  Transforms a Tensor into a serialized TensorProto proto. | 
|  SetDiff1d <T extends TType , U extends TNumber > |  Computes the difference between two lists of numbers or strings. | 
|  SetSize |  Number of unique elements along last dimension of input `set`. | 
|  SetStatsAggregatorDataset  |  | 
|  Shape <U extends TNumber > |  Returns the shape of a tensor. | 
|  ShapeN <U extends TNumber > |  Returns shape of tensors. | 
|  ShardDataset |  Creates a `Dataset` that includes only 1/`num_shards` of this dataset. | 
|  ShardedFilename |  Generate a sharded filename. | 
|  ShardedFilespec |  Generate a glob pattern matching all sharded file names. | 
|  Sharding <T extends TType > |  An op which shards the input based on the given sharding attribute. | 
|  ShuffleAndRepeatDataset  |  | 
|  ShuffleDataset  |  | 
|  ShutdownDistributedTPU |  Shuts down a running distributed TPU system. | 
|  Sigmoid <T extends TType > |  Computes sigmoid of `x` element-wise. | 
|  SigmoidGrad <T extends TType > |  Computes the gradient of the sigmoid of `x` wrt its input. | 
|  Sign <T extends TType > |  Returns an element-wise indication of the sign of a number. | 
|  Sin <T extends TType > |  Computes sine of x element-wise. | 
|  Sinh <T extends TType > |  Computes hyperbolic sine of x element-wise. | 
|  Size <U extends TNumber > |  Returns the size of a tensor. | 
|  SkipDataset |  Creates a dataset that skips `count` elements from the `input_dataset`. | 
|  Skipgram |  Parses a text file and creates a batch of examples. | 
|  SleepDataset  |  | 
|  Slice <T extends TType > |  Return a slice from 'input'. | 
|  SlidingWindowDataset |  Creates a dataset that passes a sliding window over `input_dataset`. | 
|  Snapshot <T extends TType > |  Returns a copy of the input tensor. | 
|  SobolSample <T extends TNumber > |  Generates points from the Sobol sequence. | 
|  Softmax <T extends TNumber > |  Computes softmax activations. | 
|  SoftmaxCrossEntropyWithLogits <T extends TNumber > |  Computes softmax cross entropy cost and gradients to backpropagate. | 
|  Softplus <T extends TNumber > |  Computes softplus: `log(exp(features) + 1)`. | 
|  SoftplusGrad <T extends TNumber > |  Computes softplus gradients for a softplus operation. | 
|  Softsign <T extends TNumber > |  Computes softsign: `features / (abs(features) + 1)`. | 
|  SoftsignGrad <T extends TNumber > |  Computes softsign gradients for a softsign operation. | 
|  Solve <T extends TType > |  Solves systems of linear equations. | 
|  Sort <T extends TType > |  Wraps the XLA Sort operator, documented at  https://www.tensorflow.org/performance/xla/operation_semantics#sort .  | 
|  SpaceToBatch <T extends TType > |  SpaceToBatch for 4-D tensors of type T. | 
|  SpaceToBatchNd <T extends TType > |  SpaceToBatch for ND tensors of type T. | 
|  SpaceToDepth <T extends TType > |  SpaceToDepth for tensors of type T. | 
|  SparseAccumulatorApplyGradient |  Applies a sparse gradient to a given accumulator. | 
|  SparseAccumulatorTakeGradient <T extends TType > |  Extracts the average sparse gradient in a SparseConditionalAccumulator. | 
|  SparseAdd <T extends TType > |  Adds two `SparseTensor` objects to produce another `SparseTensor`. | 
|  SparseAddGrad <T extends TType > |  The gradient operator for the SparseAdd op. | 
|  SparseApplyAdadelta <T extends TType > |  var: Should be from a Variable(). | 
|  SparseApplyAdagrad <T extends TType > |  Update relevant entries in '*var' and '*accum' according to the adagrad scheme. | 
|  SparseApplyAdagradDa <T extends TType > |  Update entries in '*var' and '*accum' according to the proximal adagrad scheme. | 
|  SparseApplyCenteredRmsProp <T extends TType > |  Update '*var' according to the centered RMSProp algorithm. | 
|  SparseApplyFtrl <T extends TType > |  Update relevant entries in '*var' according to the Ftrl-proximal scheme. | 
|  SparseApplyMomentum <T extends TType > |  Update relevant entries in '*var' and '*accum' according to the momentum scheme. | 
|  SparseApplyProximalAdagrad <T extends TType > |  Sparse update entries in '*var' and '*accum' according to FOBOS algorithm. | 
|  SparseApplyProximalGradientDescent <T extends TType > |  Sparse update '*var' as FOBOS algorithm with fixed learning rate. | 
|  SparseApplyRmsProp <T extends TType > |  Update '*var' according to the RMSProp algorithm. | 
|  SparseBincount <U extends TNumber > |  Counts the number of occurrences of each value in an integer array. | 
|  SparseConcat <T extends TType > |  Concatenates a list of `SparseTensor` along the specified dimension. | 
|  SparseConditionalAccumulator |  A conditional accumulator for aggregating sparse gradients. | 
|  SparseCountSparseOutput <U extends TNumber > |  Performs sparse-output bin counting for a sparse tensor input. | 
|  SparseCross |  Generates sparse cross from a list of sparse and dense tensors. | 
|  SparseCrossHashed |  Generates sparse cross from a list of sparse and dense tensors. | 
|  SparseDenseCwiseAdd <T extends TType > |  Adds up a SparseTensor and a dense Tensor, using these special rules:  (1) Broadcasts the dense side to have the same shape as the sparse side, if eligible; (2) Then, only the dense values pointed to by the indices of the SparseTensor participate in the cwise addition.  | 
|  SparseDenseCwiseDiv <T extends TType > |  Component-wise divides a SparseTensor by a dense Tensor. | 
|  SparseDenseCwiseMul <T extends TType > |  Component-wise multiplies a SparseTensor by a dense Tensor. | 
|  SparseFillEmptyRows <T extends TType > |  Fills empty rows in the input 2-D `SparseTensor` with a default value. | 
|  SparseFillEmptyRowsGrad <T extends TType > |  The gradient of SparseFillEmptyRows. | 
|  SparseMatMul |  Multiply matrix "a" by matrix "b". | 
|  SparseMatrixAdd |  Sparse addition of two CSR matrices, C = alpha * A + beta * B. | 
|  SparseMatrixMatMul <T extends TType > |  Matrix-multiplies a sparse matrix with a dense matrix. | 
|  SparseMatrixMul |  Element-wise multiplication of a sparse matrix with a dense tensor. | 
|  SparseMatrixNNZ |  Returns the number of nonzeroes of `sparse_matrix`. | 
|  SparseMatrixOrderingAMD |  Computes the Approximate Minimum Degree (AMD) ordering of `input`. | 
|  SparseMatrixSoftmax |  Calculates the softmax of a CSRSparseMatrix. | 
|  SparseMatrixSoftmaxGrad |  Calculates the gradient of the SparseMatrixSoftmax op. | 
|  SparseMatrixSparseCholesky |  Computes the sparse Cholesky decomposition of `input`. | 
|  SparseMatrixSparseMatMul |  Sparse-matrix-multiplies two CSR matrices `a` and `b`. | 
|  SparseMatrixTranspose |  Transposes the inner (matrix) dimensions of a CSRSparseMatrix. | 
|  SparseMatrixZeros |  Creates an all-zeros CSRSparseMatrix with shape `dense_shape`. | 
|  SparseReduceMax <T extends TNumber > |  Computes the max of elements across dimensions of a SparseTensor. | 
|  SparseReduceMaxSparse <T extends TNumber > |  Computes the max of elements across dimensions of a SparseTensor. | 
|  SparseReduceSum <T extends TType > |  Computes the sum of elements across dimensions of a SparseTensor. | 
|  SparseReduceSumSparse <T extends TType > |  Computes the sum of elements across dimensions of a SparseTensor. | 
|  SparseReorder <T extends TType > |  Reorders a SparseTensor into the canonical, row-major ordering. | 
|  SparseReshape |  Reshapes a SparseTensor to represent values in a new dense shape. | 
|  SparseSegmentMean <T extends TNumber > |  Computes the mean along sparse segments of a tensor. | 
|  SparseSegmentMeanGrad <T extends TNumber > |  Computes gradients for SparseSegmentMean. | 
|  SparseSegmentMeanWithNumSegments <T extends TNumber > |  Computes the mean along sparse segments of a tensor. | 
|  SparseSegmentSqrtN <T extends TNumber > |  Computes the sum along sparse segments of a tensor divided by the sqrt of N. | 
|  SparseSegmentSqrtNGrad <T extends TNumber > |  Computes gradients for SparseSegmentSqrtN. | 
|  SparseSegmentSqrtNWithNumSegments <T extends TNumber > |  Computes the sum along sparse segments of a tensor divided by the sqrt of N. | 
|  SparseSegmentSum <T extends TNumber > |  Computes the sum along sparse segments of a tensor. | 
|  SparseSegmentSumWithNumSegments <T extends TNumber > |  Computes the sum along sparse segments of a tensor. | 
|  SparseSlice <T extends TType > |  Slice a `SparseTensor` based on the `start` and `size`. | 
|  SparseSliceGrad <T extends TType > |  The gradient operator for the SparseSlice op. | 
|  SparseSoftmax <T extends TNumber > |  Applies softmax to a batched ND `SparseTensor`. | 
|  SparseSoftmaxCrossEntropyWithLogits <T extends TNumber > |  Computes softmax cross entropy cost and gradients to backpropagate. | 
|  SparseSparseMaximum <T extends TNumber > |  Returns the element-wise max of two SparseTensors. | 
|  SparseSparseMinimum <T extends TType > |  Returns the element-wise min of two SparseTensors. | 
|  SparseSplit <T extends TType > |  Split a `SparseTensor` into `num_split` tensors along one dimension. | 
|  SparseTensorDenseAdd <U extends TType > |  Adds up a `SparseTensor` and a dense `Tensor`, producing a dense `Tensor`. | 
|  SparseTensorDenseMatMul <U extends TType > |  Multiply SparseTensor (of rank 2) "A" by dense matrix "B". | 
|  SparseTensorSliceDataset |  Creates a dataset that splits a SparseTensor into elements row-wise. | 
|  SparseTensorToCSRSparseMatrix |  Converts a SparseTensor to a (possibly batched) CSRSparseMatrix. | 
|  SparseToDense <U extends TType > |  Converts a sparse representation into a dense tensor. | 
|  SparseToSparseSetOperation <T extends TType > |  Applies set operation along last dimension of 2 `SparseTensor` inputs. | 
|  Spence <T extends TNumber >  |  | 
|  Split <T extends TType > |  Splits a tensor into `num_split` tensors along one dimension. | 
|  SplitV <T extends TType > |  Splits a tensor into `num_split` tensors along one dimension. | 
|  SqlDataset |  Creates a dataset that executes a SQL query and emits rows of the result set. | 
|  Sqrt <T extends TType > |  Computes square root of x element-wise. | 
|  SqrtGrad <T extends TType > |  Computes the gradient for the sqrt of `x` wrt its input. | 
|  Sqrtm <T extends TType > |  Computes the matrix square root of one or more square matrices:  matmul(sqrtm(A), sqrtm(A)) = A  The input matrix should be invertible.  | 
|  Square <T extends TType > |  Computes square of x element-wise. | 
|  SquaredDifference <T extends TType > |  Returns conj(x - y)(x - y) element-wise. | 
|  Squeeze <T extends TType > |  Removes dimensions of size 1 from the shape of a tensor. | 
|  Stack <T extends TType > |  Packs a list of `N` rank-`R` tensors into one rank-`(R+1)` tensor. | 
|  שָׁלָב |  Stage values similar to a lightweight Enqueue. | 
|  StageClear |  Op removes all elements in the underlying container. | 
|  StagePeek |  Op peeks at the values at the specified index. | 
|  StageSize |  Op returns the number of elements in the underlying container. | 
|  StatefulRandomBinomial <V extends TNumber >  |  | 
|  StatefulStandardNormal <U extends TType > |  Outputs random values from a normal distribution. | 
|  StatefulTruncatedNormal <U extends TType > |  Outputs random values from a truncated normal distribution. | 
|  StatefulUniform <U extends TType > |  Outputs random values from a uniform distribution. | 
|  StatefulUniformFullInt <U extends TType > |  Outputs random integers from a uniform distribution. | 
|  StatefulUniformInt <U extends TType > |  Outputs random integers from a uniform distribution. | 
|  StatelessMultinomial <V extends TNumber > |  Draws samples from a multinomial distribution. | 
|  StatelessParameterizedTruncatedNormal <V extends TNumber >  |  | 
|  StatelessRandomBinomial <W extends TNumber > |  Outputs deterministic pseudorandom random numbers from a binomial distribution. | 
|  StatelessRandomGamma <V extends TNumber > |  Outputs deterministic pseudorandom random numbers from a gamma distribution. | 
|  StatelessRandomGetKeyCounterAlg |  Picks the best algorithm based on device, and scrambles seed into key and counter. | 
|  StatelessRandomNormal <V extends TNumber > |  Outputs deterministic pseudorandom values from a normal distribution. | 
|  StatelessRandomNormalV2 <U extends TNumber > |  Outputs deterministic pseudorandom values from a normal distribution. | 
|  StatelessRandomPoisson <W extends TNumber > |  Outputs deterministic pseudorandom random numbers from a Poisson distribution. | 
|  StatelessRandomUniform <V extends TNumber > |  Outputs deterministic pseudorandom random values from a uniform distribution. | 
|  StatelessRandomUniformFullInt <V extends TNumber > |  Outputs deterministic pseudorandom random integers from a uniform distribution. | 
|  StatelessRandomUniformFullIntV2 <U extends TNumber > |  Outputs deterministic pseudorandom random integers from a uniform distribution. | 
|  StatelessRandomUniformInt <V extends TNumber > |  Outputs deterministic pseudorandom random integers from a uniform distribution. | 
|  StatelessRandomUniformIntV2 <U extends TNumber > |  Outputs deterministic pseudorandom random integers from a uniform distribution. | 
|  StatelessRandomUniformV2 <U extends TNumber > |  Outputs deterministic pseudorandom random values from a uniform distribution. | 
|  StatelessSampleDistortedBoundingBox <T extends TNumber > |  Generate a randomly distorted bounding box for an image deterministically. | 
|  StatelessTruncatedNormal <V extends TNumber > |  Outputs deterministic pseudorandom values from a truncated normal distribution. | 
|  StatelessTruncatedNormalV2 <U extends TNumber > |  Outputs deterministic pseudorandom values from a truncated normal distribution. | 
|  StaticRegexFullMatch |  Check if the input matches the regex pattern. | 
|  StaticRegexReplace |  Replaces the match of pattern in input with rewrite. | 
|  StatsAggregatorHandle  |  | 
|  StatsAggregatorSetSummaryWriter |  Set a summary_writer_interface to record statistics using given stats_aggregator. | 
|  StatsAggregatorSummary |  Produces a summary of any statistics recorded by the given statistics manager. | 
|  StopGradient <T extends TType > |  Stops gradient computation. | 
|  StridedSlice <T extends TType > |  Return a strided slice from `input`. | 
|  StridedSliceAssign <T extends TType > |  Assign `value` to the sliced l-value reference of `ref`. | 
|  StridedSliceGrad <U extends TType > |  Returns the gradient of `StridedSlice`. | 
|  StringFormat |  Formats a string template using a list of tensors. | 
|  StringLength |  String lengths of `input`. | 
|  StringNGrams <T extends TNumber > |  Creates ngrams from ragged string data. | 
|  StringSplit |  Split elements of `source` based on `sep` into a `SparseTensor`. | 
|  לְהִתְפַּשֵׁט |  Strip leading and trailing whitespaces from the Tensor. | 
|  Sub <T extends TType > |  Returns x - y element-wise. | 
|  Substr |  Return substrings from `Tensor` of strings. | 
|  Sum <T extends TType > |  Computes the sum of elements across dimensions of a tensor. | 
|  SummaryWriter  |  | 
|  Svd <T extends TType > |  Computes the eigen decomposition of a batch of self-adjoint matrices  (Note: Only real inputs are supported).  | 
|  SwitchCond <T extends TType > |  Forwards `data` to the output port determined by `pred`. | 
|  TPUCompilationResult |  Returns the result of a TPU compilation. | 
|  TPUEmbeddingActivations |  An op enabling differentiation of TPU Embeddings. | 
|  TPUReplicateMetadata |  Metadata indicating how the TPU computation should be replicated. | 
|  TPUReplicatedInput <T extends TType > |  Connects N inputs to an N-way replicated TPU computation. | 
|  TPUReplicatedOutput <T extends TType > |  Connects N outputs from an N-way replicated TPU computation. | 
|  TakeDataset |  Creates a dataset that contains `count` elements from the `input_dataset`. | 
|  TakeManySparseFromTensorsMap <T extends TType > |  Read `SparseTensors` from a `SparseTensorsMap` and concatenate them. | 
|  Tan <T extends TType > |  Computes tan of x element-wise. | 
|  Tanh <T extends TType > |  Computes hyperbolic tangent of `x` element-wise. | 
|  TanhGrad <T extends TType > |  Computes the gradient for the tanh of `x` wrt its input. | 
|  TemporaryVariable <T extends TType > |  Returns a tensor that may be mutated, but only persists within a single step. | 
|  TensorArray |  An array of Tensors of given size. | 
|  TensorArrayClose |  Delete the TensorArray from its resource container. | 
|  TensorArrayConcat <T extends TType > |  Concat the elements from the TensorArray into value `value`. | 
|  TensorArrayGather <T extends TType > |  Gather specific elements from the TensorArray into output `value`. | 
|  TensorArrayGrad |  Creates a TensorArray for storing the gradients of values in the given handle. | 
|  TensorArrayGradWithShape |  Creates a TensorArray for storing multiple gradients of values in the given handle. | 
|  TensorArrayPack <T extends TType >  |  | 
|  TensorArrayRead <T extends TType > |  Read an element from the TensorArray into output `value`. | 
|  TensorArrayScatter |  Scatter the data from the input value into specific TensorArray elements. | 
|  TensorArraySize |  Get the current size of the TensorArray. | 
|  TensorArraySplit |  Split the data from the input value into TensorArray elements. | 
|  TensorArrayUnpack  |  | 
|  TensorArrayWrite |  Push an element onto the tensor_array. | 
|  TensorDataset |  Creates a dataset that emits `components` as a tuple of tensors once. | 
|  TensorDiag <T extends TType > |  Returns a diagonal tensor with a given diagonal values. | 
|  TensorDiagPart <T extends TType > |  Returns the diagonal part of the tensor. | 
|  TensorForestCreateTreeVariable |  Creates a tree resource and returns a handle to it. | 
|  TensorForestTreeDeserialize |  Deserializes a proto into the tree handle | 
|  TensorForestTreeIsInitializedOp |  Checks whether a tree has been initialized. | 
|  TensorForestTreePredict |  Output the logits for the given input data | 
|  TensorForestTreeResourceHandleOp |  Creates a handle to a TensorForestTreeResource | 
|  TensorForestTreeSerialize |  Serializes the tree handle to a proto | 
|  TensorForestTreeSize |  Get the number of nodes in a tree | 
|  TensorListConcat <U extends TType > |  Concats all tensors in the list along the 0th dimension. | 
|  TensorListConcatLists  |  | 
|  TensorListElementShape <T extends TNumber > |  The shape of the elements of the given list, as a tensor. | 
|  TensorListFromTensor |  Creates a TensorList which, when stacked, has the value of `tensor`. | 
|  TensorListGather <T extends TType > |  Creates a Tensor by indexing into the TensorList. | 
|  TensorListGetItem <T extends TType >  |  | 
|  TensorListLength |  Returns the number of tensors in the input tensor list. | 
|  TensorListPopBack <T extends TType > |  Returns the last element of the input list as well as a list with all but that element. | 
|  TensorListPushBack |  Returns a list which has the passed-in `Tensor` as last element and the other elements of the given list in `input_handle`. | 
|  TensorListPushBackBatch  |  | 
|  TensorListReserve |  List of the given size with empty elements. | 
|  TensorListResize |  Resizes the list. | 
|  TensorListScatter |  Creates a TensorList by indexing into a Tensor. | 
|  TensorListScatterIntoExistingList |  Scatters tensor at indices in an input list. | 
|  TensorListSetItem  |  | 
|  TensorListSplit |  Splits a tensor into a list. | 
|  TensorListStack <T extends TType > |  Stacks all tensors in the list. | 
|  TensorMapErase |  Returns a tensor map with item from given key erased. | 
|  TensorMapHasKey |  Returns whether the given key exists in the map. | 
|  TensorMapInsert |  Returns a map that is the 'input_handle' with the given key-value pair inserted. | 
|  TensorMapLookup <U extends TType > |  Returns the value from a given key in a tensor map. | 
|  TensorMapSize |  Returns the number of tensors in the input tensor map. | 
|  TensorMapStackKeys <T extends TType > |  Returns a Tensor stack of all keys in a tensor map. | 
|  TensorScatterNdAdd <T extends TType > |  Adds sparse `updates` to an existing tensor according to `indices`. | 
|  TensorScatterNdMax <T extends TType >  |  | 
|  TensorScatterNdMin <T extends TType >  |  | 
|  TensorScatterNdSub <T extends TType > |  Subtracts sparse `updates` from an existing tensor according to `indices`. | 
|  TensorScatterNdUpdate <T extends TType > |  Scatter `updates` into an existing tensor according to `indices`. | 
|  TensorSliceDataset |  Creates a dataset that emits each dim-0 slice of `components` once. | 
|  TensorStridedSliceUpdate <T extends TType > |  Assign `value` to the sliced l-value reference of `input`. | 
|  TensorSummary |  Outputs a `Summary` protocol buffer with a tensor and per-plugin data. | 
|  TextLineDataset |  Creates a dataset that emits the lines of one or more text files. | 
|  TextLineReader |  A Reader that outputs the lines of a file delimited by '\n'. | 
|  TfRecordDataset |  Creates a dataset that emits the records from one or more TFRecord files. | 
|  TfRecordReader |  A Reader that outputs the records from a TensorFlow Records file. | 
|  ThreadPoolDataset |  Creates a dataset that uses a custom thread pool to compute `input_dataset`. | 
|  ThreadPoolHandle |  Creates a dataset that uses a custom thread pool to compute `input_dataset`. | 
|  Tile <T extends TType > |  Constructs a tensor by tiling a given tensor. | 
|  TileGrad <T extends TType > |  Returns the gradient of `Tile`. | 
|  Timestamp |  Provides the time since epoch in seconds. | 
|  ToBool |  Converts a tensor to a scalar predicate. | 
|  ToHashBucket |  Converts each string in the input Tensor to its hash mod by a number of buckets. | 
|  ToHashBucketFast |  Converts each string in the input Tensor to its hash mod by a number of buckets. | 
|  ToHashBucketStrong |  Converts each string in the input Tensor to its hash mod by a number of buckets. | 
|  ToNumber <T extends TNumber > |  Converts each string in the input Tensor to the specified numeric type. | 
|  TopK <T extends TNumber > |  Finds values and indices of the `k` largest elements for the last dimension. | 
|  TopKUnique |  Returns the TopK unique values in the array in sorted order. | 
|  TopKWithUnique |  Returns the TopK values in the array in sorted order. | 
|  Transpose <T extends TType > |  Shuffle dimensions of x according to a permutation. | 
|  TriangularSolve <T extends TType > |  Solves systems of linear equations with upper or lower triangular matrices by backsubstitution. | 
|  TridiagonalMatMul <T extends TType > |  Calculate product with tridiagonal matrix. | 
|  TridiagonalSolve <T extends TType > |  Solves tridiagonal systems of equations. | 
|  TruncateDiv <T extends TType > |  Returns x / y element-wise for integer types. | 
|  TruncateMod <T extends TNumber > |  Returns element-wise remainder of division. | 
|  TruncatedNormal <U extends TNumber > |  Outputs random values from a truncated normal distribution. | 
|  TryRpc |  Perform batches of RPC requests. | 
|  Unbatch <T extends TType > |  Reverses the operation of Batch for a single output Tensor. | 
|  UnbatchDataset |  A dataset that splits the elements of its input into multiple elements. | 
|  UnbatchGrad <T extends TType > |  Gradient of Unbatch. | 
|  UncompressElement |  Uncompresses a compressed dataset element. | 
|  UnicodeDecode <T extends TNumber > |  Decodes each string in `input` into a sequence of Unicode code points. | 
|  UnicodeDecodeWithOffsets <T extends TNumber > |  Decodes each string in `input` into a sequence of Unicode code points. | 
|  UnicodeEncode |  Encode a tensor of ints into unicode strings. | 
|  UnicodeScript |  Determine the script codes of a given tensor of Unicode integer code points. | 
|  UnicodeTranscode |  Transcode the input text from a source encoding to a destination encoding. | 
|  UniformCandidateSampler |  Generates labels for candidate sampling with a uniform distribution. | 
|  Unique <T extends TType , V extends TNumber > |  Finds unique elements along an axis of a tensor. | 
|  UniqueDataset |  Creates a dataset that contains the unique elements of `input_dataset`. | 
|  UniqueWithCounts <T extends TType , V extends TNumber > |  Finds unique elements along an axis of a tensor. | 
|  UnravelIndex <T extends TNumber > |  Converts an array of flat indices into a tuple of coordinate arrays. | 
|  UnsortedSegmentJoin |  Joins the elements of `inputs` based on `segment_ids`. | 
|  UnsortedSegmentMax <T extends TNumber > |  Computes the maximum along segments of a tensor. | 
|  UnsortedSegmentMin <T extends TNumber > |  Computes the minimum along segments of a tensor. | 
|  UnsortedSegmentProd <T extends TType > |  Computes the product along segments of a tensor. | 
|  UnsortedSegmentSum <T extends TType > |  Computes the sum along segments of a tensor. | 
|  Unstack <T extends TType > |  Unpacks a given dimension of a rank-`R` tensor into `num` rank-`(R-1)` tensors. | 
|  Unstage |  Op is similar to a lightweight Dequeue. | 
|  UnwrapDatasetVariant  |  | 
|  עֶלִיוֹן |  Converts all lowercase characters into their respective uppercase replacements. | 
|  UpperBound <U extends TNumber > |  Applies upper_bound(sorted_search_values, values) along each row. | 
|  VarHandleOp |  Creates a handle to a Variable resource. | 
|  VarIsInitializedOp |  Checks whether a resource handle-based variable has been initialized. | 
|  Variable <T extends TType > |  Holds state in the form of a tensor that persists across steps. | 
|  VariableShape <T extends TNumber > |  Returns the shape of the variable pointed to by `resource`. | 
|  אֵיפֹה |  Returns locations of nonzero / true values in a tensor. | 
|  WholeFileReader |  A Reader that outputs the entire contents of a file as a value. | 
|  WindowDataset |  Combines (nests of) input elements into a dataset of (nests of) windows. | 
|  WorkerHeartbeat |  Worker heartbeat op. | 
|  WrapDatasetVariant  |  | 
|  WriteAudioSummary |  Writes an audio summary. | 
|  WriteFile |  Writes contents to the file at input filename. | 
|  WriteGraphSummary |  Writes a graph summary. | 
|  WriteHistogramSummary |  Writes a histogram summary. | 
|  WriteImageSummary |  Writes an image summary. | 
|  WriteRawProtoSummary |  Writes a serialized proto summary. | 
|  WriteScalarSummary |  Writes a scalar summary. | 
|  WriteSummary |  Writes a tensor summary. | 
|  Xdivy <T extends TType > |  Returns 0 if x == 0, and x / y otherwise, elementwise. | 
|  XlaRecvFromHost <T extends TType > |  An op to receive a tensor from the host. | 
|  XlaSendToHost |  An op to send a tensor to the host. | 
|  XlaSetBound |  Set a bound for the given input value as a hint to Xla compiler,  returns the same value.  | 
|  XlaSpmdFullToShardShape <T extends TType > |  An op used by XLA SPMD partitioner to switch from automatic partitioning to  manual partitioning.  | 
|  XlaSpmdShardToFullShape <T extends TType > |  An op used by XLA SPMD partitioner to switch from manual partitioning to  automatic partitioning.  | 
|  Xlog1py <T extends TType > |  Returns 0 if x == 0, and x * log1p(y) otherwise, elementwise. | 
|  Xlogy <T extends TType > |  Returns 0 if x == 0, and x * log(y) otherwise, elementwise. | 
|  ZerosLike <T extends TType > |  Returns a tensor of zeros with the same shape and type as x. | 
|  Zeta <T extends TNumber > |  Compute the Hurwitz zeta function \\(\zeta(x, q)\\). | 
|  ZipDataset |  Creates a dataset that zips together `input_datasets`. | 
|  erfinv <T extends TNumber >  |  |