public final class
ResourceApplyAdaMax
Update '*var' according to the AdaMax algorithm.
m_t <- beta1 * m_{t-1} + (1 - beta1) * g v_t <- max(beta2 * v_{t-1}, abs(g)) variable <- variable - learning_rate / (1 - beta1^t) * m_t / (v_t + epsilon)
Nested Classes
| class | ResourceApplyAdaMax.Options | Optional attributes for ResourceApplyAdaMax
|
|
Constants
| String | OP_NAME | The name of this op, as known by TensorFlow core engine |
Public Methods
| static <T extends TType> ResourceApplyAdaMax | |
| static ResourceApplyAdaMax.Options |
useLocking(Boolean useLocking)
|
Inherited Methods
Constants
public static final String OP_NAME
The name of this op, as known by TensorFlow core engine
Constant Value:
"ResourceApplyAdaMax"
Public Methods
public static ResourceApplyAdaMax create (Scope scope, Operand<?> var, Operand<?> m, Operand<?> v, Operand<T> beta1Power, Operand<T> lr, Operand<T> beta1, Operand<T> beta2, Operand<T> epsilon, Operand<T> grad, Options... options)
Factory method to create a class wrapping a new ResourceApplyAdaMax operation.
Parameters
| scope | current scope |
|---|---|
| var | Should be from a Variable(). |
| m | Should be from a Variable(). |
| v | Should be from a Variable(). |
| beta1Power | Must be a scalar. |
| lr | Scaling factor. Must be a scalar. |
| beta1 | Momentum factor. Must be a scalar. |
| beta2 | Momentum factor. Must be a scalar. |
| epsilon | Ridge term. Must be a scalar. |
| grad | The gradient. |
| options | carries optional attributes values |
Returns
- a new instance of ResourceApplyAdaMax
public static ResourceApplyAdaMax.Options useLocking (Boolean useLocking)
Parameters
| useLocking | If `True`, updating of the var, m, and v tensors will be protected by a lock; otherwise the behavior is undefined, but may exhibit less contention. |
|---|