SparseReorder
Stay organized with collections
Save and categorize content based on your preferences.
Reorders a SparseTensor into the canonical, row-major ordering.
Note that by convention, all sparse ops preserve the canonical ordering along
increasing dimension number. The only time ordering can be violated is during
manual manipulation of the indices and values vectors to add entries.
Reordering does not affect the shape of the SparseTensor.
If the tensor has rank `R` and `N` non-empty values, `input_indices` has
shape `[N, R]`, input_values has length `N`, and input_shape has length `R`.
Constants
String |
OP_NAME |
The name of this op, as known by TensorFlow core engine |
Inherited Methods
From class
java.lang.Object
boolean
|
equals(Object arg0)
|
final
Class<?>
|
getClass()
|
int
|
hashCode()
|
final
void
|
notify()
|
final
void
|
notifyAll()
|
String
|
toString()
|
final
void
|
wait(long arg0, int arg1)
|
final
void
|
wait(long arg0)
|
final
void
|
wait()
|
Constants
public
static
final
String
OP_NAME
The name of this op, as known by TensorFlow core engine
Constant Value:
"SparseReorder"
Public Methods
Factory method to create a class wrapping a new SparseReorder operation.
Parameters
scope |
current scope |
inputIndices |
2-D. `N x R` matrix with the indices of non-empty values in a
SparseTensor, possibly not in canonical ordering. |
inputValues |
1-D. `N` non-empty values corresponding to `input_indices`. |
inputShape |
1-D. Shape of the input SparseTensor. |
Returns
- a new instance of SparseReorder
public
Output<TInt64>
outputIndices
()
2-D. `N x R` matrix with the same indices as input_indices, but
in canonical row-major ordering.
public
Output<T>
outputValues
()
1-D. `N` non-empty values corresponding to `output_indices`.
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates.
Last updated 2021-11-29 UTC.
[[["Easy to understand","easyToUnderstand","thumb-up"],["Solved my problem","solvedMyProblem","thumb-up"],["Other","otherUp","thumb-up"]],[["Missing the information I need","missingTheInformationINeed","thumb-down"],["Too complicated / too many steps","tooComplicatedTooManySteps","thumb-down"],["Out of date","outOfDate","thumb-down"],["Samples / code issue","samplesCodeIssue","thumb-down"],["Other","otherDown","thumb-down"]],["Last updated 2021-11-29 UTC."],[],[],null,["# SparseReorder\n\npublic final class **SparseReorder** \nReorders a SparseTensor into the canonical, row-major ordering.\n\n\nNote that by convention, all sparse ops preserve the canonical ordering along\nincreasing dimension number. The only time ordering can be violated is during\nmanual manipulation of the indices and values vectors to add entries.\n\n\nReordering does not affect the shape of the SparseTensor.\n\n\nIf the tensor has rank \\`R\\` and \\`N\\` non-empty values, \\`input_indices\\` has\nshape \\`\\[N, R\\]\\`, input_values has length \\`N\\`, and input_shape has length \\`R\\`.\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n### Constants\n\n|--------|------------------------------------------------------------------------------|---------------------------------------------------------|\n| String | [OP_NAME](/jvm/api_docs/java/org/tensorflow/op/sparse/SparseReorder#OP_NAME) | The name of this op, as known by TensorFlow core engine |\n\n### Public Methods\n\n|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| static \\\u003cT extends [TType](/jvm/api_docs/java/org/tensorflow/types/family/TType)\\\u003e [SparseReorder](/jvm/api_docs/java/org/tensorflow/op/sparse/SparseReorder)\\\u003cT\\\u003e | [create](/jvm/api_docs/java/org/tensorflow/op/sparse/SparseReorder#create(org.tensorflow.op.Scope, org.tensorflow.Operand\u003corg.tensorflow.types.TInt64\u003e, org.tensorflow.Operand\u003cT\u003e, org.tensorflow.Operand\u003corg.tensorflow.types.TInt64\u003e))([Scope](/jvm/api_docs/java/org/tensorflow/op/Scope) scope, [Operand](/jvm/api_docs/java/org/tensorflow/Operand)\\\u003c[TInt64](/jvm/api_docs/java/org/tensorflow/types/TInt64)\\\u003e inputIndices, [Operand](/jvm/api_docs/java/org/tensorflow/Operand)\\\u003cT\\\u003e inputValues, [Operand](/jvm/api_docs/java/org/tensorflow/Operand)\\\u003c[TInt64](/jvm/api_docs/java/org/tensorflow/types/TInt64)\\\u003e inputShape) Factory method to create a class wrapping a new SparseReorder operation. |\n| [Output](/jvm/api_docs/java/org/tensorflow/Output)\\\u003c[TInt64](/jvm/api_docs/java/org/tensorflow/types/TInt64)\\\u003e | [outputIndices](/jvm/api_docs/java/org/tensorflow/op/sparse/SparseReorder#outputIndices())() 2-D. |\n| [Output](/jvm/api_docs/java/org/tensorflow/Output)\\\u003cT\\\u003e | [outputValues](/jvm/api_docs/java/org/tensorflow/op/sparse/SparseReorder#outputValues())() 1-D. |\n\n### Inherited Methods\n\nFrom class [org.tensorflow.op.RawOp](/jvm/api_docs/java/org/tensorflow/op/RawOp) \n\n|----------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| final boolean | [equals](/jvm/api_docs/java/org/tensorflow/op/RawOp#equals(java.lang.Object))(Object obj) |\n| final int | [hashCode](/jvm/api_docs/java/org/tensorflow/op/RawOp#hashCode())() |\n| [Operation](/jvm/api_docs/java/org/tensorflow/Operation) | [op](/jvm/api_docs/java/org/tensorflow/op/RawOp#op())() Return this unit of computation as a single [Operation](/jvm/api_docs/java/org/tensorflow/Operation). |\n| final String | [toString](/jvm/api_docs/java/org/tensorflow/op/RawOp#toString())() |\n\nFrom class java.lang.Object \n\n|------------------|---------------------------|\n| boolean | equals(Object arg0) |\n| final Class\\\u003c?\\\u003e | getClass() |\n| int | hashCode() |\n| final void | notify() |\n| final void | notifyAll() |\n| String | toString() |\n| final void | wait(long arg0, int arg1) |\n| final void | wait(long arg0) |\n| final void | wait() |\n\nFrom interface [org.tensorflow.op.Op](/jvm/api_docs/java/org/tensorflow/op/Op) \n\n|-----------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| abstract [ExecutionEnvironment](/jvm/api_docs/java/org/tensorflow/ExecutionEnvironment) | [env](/jvm/api_docs/java/org/tensorflow/op/Op#env())() Return the execution environment this op was created in. |\n| abstract [Operation](/jvm/api_docs/java/org/tensorflow/Operation) | [op](/jvm/api_docs/java/org/tensorflow/op/Op#op())() Return this unit of computation as a single [Operation](/jvm/api_docs/java/org/tensorflow/Operation). |\n\nConstants\n---------\n\n#### public static final String\n**OP_NAME**\n\nThe name of this op, as known by TensorFlow core engine \nConstant Value: \"SparseReorder\"\n\nPublic Methods\n--------------\n\n#### public static [SparseReorder](/jvm/api_docs/java/org/tensorflow/op/sparse/SparseReorder)\\\u003cT\\\u003e\n**create**\n([Scope](/jvm/api_docs/java/org/tensorflow/op/Scope) scope, [Operand](/jvm/api_docs/java/org/tensorflow/Operand)\\\u003c[TInt64](/jvm/api_docs/java/org/tensorflow/types/TInt64)\\\u003e inputIndices, [Operand](/jvm/api_docs/java/org/tensorflow/Operand)\\\u003cT\\\u003e inputValues, [Operand](/jvm/api_docs/java/org/tensorflow/Operand)\\\u003c[TInt64](/jvm/api_docs/java/org/tensorflow/types/TInt64)\\\u003e inputShape)\n\nFactory method to create a class wrapping a new SparseReorder operation. \n\n##### Parameters\n\n| scope | current scope |\n| inputIndices | 2-D. \\`N x R\\` matrix with the indices of non-empty values in a SparseTensor, possibly not in canonical ordering. |\n| inputValues | 1-D. \\`N\\` non-empty values corresponding to \\`input_indices\\`. |\n| inputShape | 1-D. Shape of the input SparseTensor. |\n|--------------|-------------------------------------------------------------------------------------------------------------------|\n\n##### Returns\n\n- a new instance of SparseReorder \n\n#### public [Output](/jvm/api_docs/java/org/tensorflow/Output)\\\u003c[TInt64](/jvm/api_docs/java/org/tensorflow/types/TInt64)\\\u003e\n**outputIndices**\n()\n\n2-D. \\`N x R\\` matrix with the same indices as input_indices, but\nin canonical row-major ordering. \n\n#### public [Output](/jvm/api_docs/java/org/tensorflow/Output)\\\u003cT\\\u003e\n**outputValues**\n()\n\n1-D. \\`N\\` non-empty values corresponding to \\`output_indices\\`."]]