Public Constructors
Public Methods
| static <T extends TNumber> Operand<T> |
sigmoidCrossEntropyWithLogits(Scope scope, Operand<T> labels, Operand<T> logits)
Computes sigmoid cross entropy given
logits. |
Inherited Methods
Public Constructors
public SigmoidCrossEntropyWithLogits ()
Public Methods
public static Operand<T> sigmoidCrossEntropyWithLogits (Scope scope, Operand<T> labels, Operand<T> logits)
Computes sigmoid cross entropy given logits.
Measures the probability error in discrete classification tasks in which each class is independent and not mutually exclusive. For instance, one could perform multilabel classification where a picture can contain both an elephant and a dog at the same time.
For brevity, let x = logits, z = labels. The logistic loss in
pseudo-code is
z * -log(sigmoid(x)) + (1 - z) * -log(1 - sigmoid(x)) = z * -log(1 / (1 + exp(-x))) + (1 - z) * -log(exp(-x) / (1 + exp(-x))) = z * log(1 + exp(-x)) + (1 - z) * (-log(exp(-x)) + log(1 + exp(-x))) = z * log(1 + exp(-x)) + (1 - z) * (x + log(1 + exp(-x)) = (1 - z) * x + log(1 + exp(-x)) = x - x * z + log(1 + exp(-x))
For x < 0, to avoid overflow in exp(-x), we reformulate the above
x - x * z + log(1 + exp(-x)) = log(exp(x)) - x * z + log(1 + exp(-x)) = - x * z + log(1 + exp(x))
Hence, to ensure stability and avoid overflow, the implementation uses this equivalent formulation
max(x, 0) - x * z + log(1 + exp(-abs(x)))
logits and labels must have the same type and shape.
Parameters
| scope | The TensorFlow scope |
|---|---|
| labels | the labels |
| logits | the logits of type float32 or float64 |
Returns
- the component-wise logistic losses.
Throws
| IllegalArgumentException | if logits' and labels' do not have the same shape |
|---|